Galois cohomology and profinitely solitary Chevalley groups

被引:0
|
作者
Kammeyer, Holger [1 ]
Spitler, Ryan [2 ]
机构
[1] Heinrich Heine Univ Dusseldorf, Math Inst, Fac Math & Nat Sci, Dusseldorf, Germany
[2] Rice Univ, Dept Math, Houston, TX USA
关键词
22E40; 20E18; 11E72;
D O I
10.1007/s00208-024-02808-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For every number field and every Cartan Killing type, there is an associated split simple algebraic group. We examine whether the corresponding arithmetic subgroups are profinitely solitary so that the commensurability class of the profinite completion determines the commensurability class of the group among finitely generated residually finite groups. Assuming Grothendieck rigidity, we essentially solve the problem by Galois cohomological means.
引用
收藏
页码:2497 / 2511
页数:15
相关论文
共 50 条
  • [21] Toda lattice, cohomology of compact Lie groups and finite Chevalley groups
    Casian, Luis
    Kodama, Yuji
    INVENTIONES MATHEMATICAE, 2006, 165 (01) : 163 - 208
  • [22] On comparing the cohomology of algebraic groups, finite Chevalley groups and Frobenius kernels
    Bendel, CP
    Nakano, DK
    Pillen, C
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2001, 163 (02) : 119 - 146
  • [23] A NOTE ON GALOIS COHOMOLOGY GROUPS OF ALGEBRAIC TORI
    AMANO, K
    NAGOYA MATHEMATICAL JOURNAL, 1969, 34 (MAR) : 121 - &
  • [24] COHOMOLOGY AND OVERCONVERGENCE FOR REPRESENTATIONS OF POWERS OF GALOIS GROUPS
    Pal, Aprameyo
    Zabradi, Gergely
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2021, 20 (02) : 361 - 421
  • [25] BRAUER GROUPS AND GALOIS COHOMOLOGY FOR A KRULL SCHEME
    LEE, H
    ORZECH, M
    JOURNAL OF ALGEBRA, 1985, 95 (02) : 309 - 331
  • [26] On the cohomology of Galois groups determined by Witt rings
    Adem, A
    Karagueuzian, DB
    Minác, J
    ADVANCES IN MATHEMATICS, 1999, 148 (01) : 105 - 160
  • [27] Field theory and the cohomology of some Galois groups
    Adem, A
    Gao, W
    Karagueuzian, DB
    Minác, J
    JOURNAL OF ALGEBRA, 2001, 235 (02) : 608 - 635
  • [28] Classification of Quantum Groups via Galois Cohomology
    Karolinsky, Eugene
    Pianzola, Arturo
    Stolin, Alexander
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 377 (02) : 1099 - 1129
  • [29] Quotients of absolute Galois groups which determine the entire Galois cohomology
    Chebolu, Sunil K.
    Efrat, Ido
    Minac, Jan
    MATHEMATISCHE ANNALEN, 2012, 352 (01) : 205 - 221
  • [30] Classification of Quantum Groups via Galois Cohomology
    Eugene Karolinsky
    Arturo Pianzola
    Alexander Stolin
    Communications in Mathematical Physics, 2020, 377 : 1099 - 1129