Feature fusion;
Image enhancement;
Deep neural network;
Light-weight model;
SIMILARITY;
D O I:
10.1007/s00530-023-01252-1
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
The low-light image enhancement algorithm aims to solve the problem of poor contrast and low brightness of images in low-light environments. Although many image enhancement algorithms have been proposed, they still face the problems of loss of significant features in the enhanced image, inadequate brightness improvement, and a large number of algorithm-specific parameters. To solve the above problems, this paper proposes a Fast Multi-scale Residual Network (FMR-Net) for low-light image enhancement. By superimposing highly optimized residual blocks and designing branching structures, we propose light-weight backbone networks with only 0.014M parameters. In this paper, we design a plug-and-play fast multi-scale residual block for image feature extraction and inference acceleration. Extensive experimental validation shows that the algorithm in this paper can improve the brightness and maintain the contrast of low-light images while keeping a small number of parameters, and achieves superior performance in both subjective vision tests and image quality tests compared to existing methods.
机构:
China Univ Min & Technol Beijing, Sch Artificial Intelligence, Beijing 100083, Peoples R ChinaChina Univ Min & Technol Beijing, Sch Artificial Intelligence, Beijing 100083, Peoples R China
Hu, Xiaopeng
Liu, Kang
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol Beijing, Sch Artificial Intelligence, Beijing 100083, Peoples R ChinaChina Univ Min & Technol Beijing, Sch Artificial Intelligence, Beijing 100083, Peoples R China
Liu, Kang
Yin, Xiangchen
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sci & Technol China, Hefei 230026, Peoples R ChinaChina Univ Min & Technol Beijing, Sch Artificial Intelligence, Beijing 100083, Peoples R China
Yin, Xiangchen
Gao, Xin
论文数: 0引用数: 0
h-index: 0
机构:China Univ Min & Technol Beijing, Sch Artificial Intelligence, Beijing 100083, Peoples R China
Gao, Xin
Jiang, Pingsheng
论文数: 0引用数: 0
h-index: 0
机构:China Univ Min & Technol Beijing, Sch Artificial Intelligence, Beijing 100083, Peoples R China
Jiang, Pingsheng
Qian, Xu
论文数: 0引用数: 0
h-index: 0
机构:China Univ Min & Technol Beijing, Sch Artificial Intelligence, Beijing 100083, Peoples R China
机构:
China Univ Min & Technol Beijing, Sch Artificial Intelligence, Beijing 100083, Peoples R ChinaChina Univ Min & Technol Beijing, Sch Artificial Intelligence, Beijing 100083, Peoples R China
Hu, Xiaopeng
Liu, Kang
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol Beijing, Sch Artificial Intelligence, Beijing 100083, Peoples R ChinaChina Univ Min & Technol Beijing, Sch Artificial Intelligence, Beijing 100083, Peoples R China
Liu, Kang
Yin, Xiangchen
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sci & Technol China, Hefei 230026, Peoples R ChinaChina Univ Min & Technol Beijing, Sch Artificial Intelligence, Beijing 100083, Peoples R China
Yin, Xiangchen
Gao, Xin
论文数: 0引用数: 0
h-index: 0
机构:China Univ Min & Technol Beijing, Sch Artificial Intelligence, Beijing 100083, Peoples R China
Gao, Xin
Jiang, Pingsheng
论文数: 0引用数: 0
h-index: 0
机构:China Univ Min & Technol Beijing, Sch Artificial Intelligence, Beijing 100083, Peoples R China
Jiang, Pingsheng
Qian, Xu
论文数: 0引用数: 0
h-index: 0
机构:China Univ Min & Technol Beijing, Sch Artificial Intelligence, Beijing 100083, Peoples R China