FMR-Net: a fast multi-scale residual network for low-light image enhancement

被引:0
作者
Chen, Yuhan [1 ,2 ,3 ]
Zhu, Ge [1 ,2 ,3 ]
Wang, Xianquan [1 ,2 ,3 ]
Shen, Yuhuai [1 ,2 ,3 ]
机构
[1] Chongqing Univ Technol, Sch Mech Engn, Chongqing 400054, Peoples R China
[2] Chongqing Univ Technol, Engn Res Ctr Mech Testing Technol & Equipment, Minist Educ, Chongqing 400054, Peoples R China
[3] Chongqing Univ Technol, Chongqing Key Lab Time Grating Sensing & Adv Test, Chongqing 400054, Peoples R China
关键词
Feature fusion; Image enhancement; Deep neural network; Light-weight model; SIMILARITY;
D O I
10.1007/s00530-023-01252-1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The low-light image enhancement algorithm aims to solve the problem of poor contrast and low brightness of images in low-light environments. Although many image enhancement algorithms have been proposed, they still face the problems of loss of significant features in the enhanced image, inadequate brightness improvement, and a large number of algorithm-specific parameters. To solve the above problems, this paper proposes a Fast Multi-scale Residual Network (FMR-Net) for low-light image enhancement. By superimposing highly optimized residual blocks and designing branching structures, we propose light-weight backbone networks with only 0.014M parameters. In this paper, we design a plug-and-play fast multi-scale residual block for image feature extraction and inference acceleration. Extensive experimental validation shows that the algorithm in this paper can improve the brightness and maintain the contrast of low-light images while keeping a small number of parameters, and achieves superior performance in both subjective vision tests and image quality tests compared to existing methods.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Multi-Branch and Progressive Network for Low-Light Image Enhancement
    Zhang, Kaibing
    Yuan, Cheng
    Li, Jie
    Gao, Xinbo
    Li, Minqi
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 2295 - 2308
  • [22] A lightweight multi-branch network for low-light image enhancement
    Yu, Youjiang
    Yuan, Cheng
    Zhang, Kaibing
    Wang, Xiaohua
    ELECTRONICS LETTERS, 2023, 59 (09)
  • [23] Lightening Network for Low-Light Image Enhancement
    Wang, Li-Wen
    Liu, Zhi-Song
    Siu, Wan-Chi
    Lun, Daniel P. K.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 7984 - 7996
  • [24] Low-Light Image Enhancement Network Based on Recursive Network
    Liu, Fangjin
    Hua, Zhen
    Li, Jinjiang
    Fan, Linwei
    FRONTIERS IN NEUROROBOTICS, 2022, 16
  • [25] Exposure difference network for low-light image enhancement
    Jiang, Shengqin
    Mei, Yongyue
    Wang, Peng
    Liu, Qingshan
    PATTERN RECOGNITION, 2024, 156
  • [26] A Multi-Scale Fusion Residual Encoder-Decoder Approach for Low Illumination Image Enhancement
    Pan X.
    Wei M.
    Wang H.
    Jia F.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2022, 34 (01): : 104 - 112
  • [27] Attention Guided Low-Light Image Enhancement with a Large Scale Low-Light Simulation Dataset
    Lv, Feifan
    Li, Yu
    Lu, Feng
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2021, 129 (07) : 2175 - 2193
  • [28] Attention Guided Low-Light Image Enhancement with a Large Scale Low-Light Simulation Dataset
    Feifan Lv
    Yu Li
    Feng Lu
    International Journal of Computer Vision, 2021, 129 : 2175 - 2193
  • [29] Multi-scale fusion residual encoder-decoder approach for low illumination image enhancement
    Xiaoying P.
    Miao W.
    Hao W.
    Fengzhü J.
    Journal of China Universities of Posts and Telecommunications, 2022, 29 (02): : 63 - 72
  • [30] Slender Swarm Flamingo optimization-based residual low-light image enhancement network
    Fernisha, S. R.
    Christopher, C. Seldev
    Lyernisha, S. R.
    IMAGING SCIENCE JOURNAL, 2021, 69 (5-8) : 391 - 406