SOME k-FRACTIONAL INTEGRAL INEQUALITIES FOR p-CONVEX FUNCTIONS

被引:1
作者
Mehreen, Naila [1 ]
Anwar, Matloob [1 ]
机构
[1] Natl Univ Sci & Technol, Sch Nat Sci, H-12, Islamabad, Pakistan
来源
KRAGUJEVAC JOURNAL OF MATHEMATICS | 2024年 / 48卷 / 01期
关键词
Hermite-Hadamard inequality; p-convex function; Riemann-Liouville k- fractional integrals; k-fractional conformable integrals; HADAMARD-TYPE INEQUALITIES; HERMITE-HADAMARD;
D O I
10.46793/KgJMat2401.025M
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we use Riemann-Liouville k -fractional and k -fractional confomable integrals to prove Hermite-Hadamard inequality, an identity and HermiteHadamard type inequality for p -convex functions. Some special cases are also discussed. Our work is extensions of other related previous results.
引用
收藏
页码:25 / 39
页数:15
相关论文
共 27 条
  • [1] [Anonymous], 1893, J. Math. Pures Appl., V58, P171
  • [2] Daz R., 2007, Divulg. Math, V15, P179
  • [3] Dragomir S., 1995, Soochow Journal of Mathematics, V21, P335
  • [4] Dragomir S. S., 1999, Demonstr. Math., V32, P687, DOI [DOI 10.1515/dema-1999-0403, 10.1515/dema-1999-0403]
  • [5] Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula
    Dragomir, SS
    Agarwal, RP
    [J]. APPLIED MATHEMATICS LETTERS, 1998, 11 (05) : 91 - 95
  • [6] Farid G., 2016, Nonlinear Funct. Anal. Appl., V4, P79
  • [7] Hermite C., 1883, Mathesis, V82
  • [8] Iscan I, 2016, INT J ANAL APPL, V11, P137
  • [9] Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals
    Iscan, Imdat
    Wu, Shanhe
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 238 : 237 - 244
  • [10] On a new class of fractional operators
    Jarad, Fahd
    Ugurlu, Ekin
    Abdeljawad, Thabet
    Baleanu, Dumitru
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2017,