Understanding the effect of TiCl4 treatment at TiO2/Sb2S3 interface on the enhanced performance of Sb2S3 solar cells

被引:0
|
作者
Miranda-Gamboa, Ramses Alejandro [1 ]
Baron-Jaimes, Agustin [1 ]
Millan-Franco, Mario Alejandro [1 ]
Perez, Obed [2 ]
Rincon, Marina E. [1 ]
Jaramillo-Quintero, Oscar Andres [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Energ Renovables, Privada Xochicalco S-N, Temixco 62580, Mor, Hungary
[2] Inst Politecn Nacl, Ctr Invest Ciencia Aplicada & Tecnol Avanzada, Unidad Legaria, Mexico City, Mexico
关键词
antimony sulfide solar cells; TiCl4; treatment; TiO2/Sb2S3; interface; NANOCRYSTALLINE TIO2 FILMS; RAMAN-SPECTRA; BAND-EDGE; LAYER; EFFICIENT; QUANTIFICATION; RECOMBINATION; POSTTREATMENT; DEPOSITION; TRANSPORT;
D O I
10.1088/2053-1591/ad2486
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The continuous search for low-cost and environment-friendly materials in photovoltaic applications has become a priority, as well as the understanding of the various strategies to boost the photovoltaic performance. In this work, we investigate the effect of TiCl4 treatment on a compact TiO2 layer used as an electron transport material (ETM) in Sb2S3 planar solar cells. After TiCl4 treatment, TiO2 exhibits higher crystallinity, lower density of hydroxyl groups acting as traps, and better surface coverage of the FTO substrate. Although no major structural changes are observed in Sb2S3 films grown on pristine or TiCl4 treated TiO2 films, there are differences in preferential growth of Sb2S3 (hk1) planes, sulfur-enrichment of the chalcogenide film, and superior substrate coverage after the TiCl4 treatment, leading to the decrease of interfacial trap states. The driving force for electron injection in the TiO2/Sb2S3 heterojunction is also favored by the shift on the VB and CB positions of TiCl4 treated TiO2. These findings are in agreement with the improved power conversion efficiency of the planar solar cell FTO/TiO2-Treated/Sb2S3/SbCl3/spiro-OMeTAD/Au.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Efficiency enhanced rutile TiO2 nanowire solar cells based on an Sb2S3 absorber and a CuI hole conductor
    Sun, Panpan
    Zhang, Xintong
    Wang, Lingling
    Wei, Yongan
    Wang, Changhua
    Liu, Yichun
    NEW JOURNAL OF CHEMISTRY, 2015, 39 (09) : 7243 - 7250
  • [32] Sb2S3 solar cells with TiO2 electron transporting layers synthesized by ALD and USP methods
    Dedova, T.
    Krautmann, R.
    Rusu, M.
    Katerski, A.
    Krunks, M.
    Unold, T.
    Spalatu, N.
    Mere, A.
    Sydorenko, J.
    Sibinski, M.
    Acik, I. Oja
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2025, 280
  • [33] Atmospheric annealing effect on TiO2/Sb2S3/P3HT heterojunction hybrid solar cell performance
    Kamruzzaman, M.
    Chaoping, L.
    Yishu, F.
    Ul Islam, A. K. M. Farid
    Zapien, J. A.
    RSC ADVANCES, 2016, 6 (101): : 99282 - 99290
  • [34] Defect states in hybrid solar cells consisting of Sb2S3 quantum dots and TiO2 nanoparticles
    Lee, Dong Uk
    Pak, Sang Woo
    Cho, Seong Gook
    Kim, Eun Kyu
    Seok, Sang Il
    APPLIED PHYSICS LETTERS, 2013, 103 (02)
  • [35] On the structure of stibnite (Sb2S3)
    Arun, P
    Vedeshwar, AG
    JOURNAL OF MATERIALS SCIENCE, 1996, 31 (24) : 6507 - 6510
  • [36] PHOTOCONDUCTIVITY OF STIBNITE (SB2S3)
    IBUKI, S
    YOSHIMATSU, S
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1955, 10 (07) : 549 - 554
  • [37] Kinetics of crystal growth of Sb2S3 in (GeS2)0.3(Sb2S3)0.7 glass
    Malek, Jiri
    Svadlak, Daniel
    Mitsuhashi, Takefumi
    Haneda, Hajime
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2006, 352 (21-22) : 2243 - 2253
  • [38] HYDROTHERMAL CRYSTALLIZATION OF SB2S3
    POPOLITOV, VI
    SOVIET PHYSICS CRYSTALLOGRAPHY, USSR, 1969, 14 (03): : 461 - +
  • [39] Hybrid solar cells from Sb2S3 nanoparticle ink
    Wang, Wei
    Stroessner, Frank
    Zimmermann, Eugen
    Schmidt-Mende, Lukas
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 172 : 335 - 340
  • [40] Effect of TiO2 Microstructure and Introduction of Silver Nanoparticles on Conversion Efficiency of Sb2S3 Sensitized Semiconductor Solar Cells
    Yoshioka, Shohei
    Mishima, Takayoshi
    Ihara, Manabu
    PHOTOVOLTAICS FOR THE 21ST CENTURY 8, 2013, 50 (51): : 33 - 44