Highly safe lithium vanadium oxide anode for fast-charging dendrite-free lithium-ion batteries

被引:1
|
作者
Zhang, Hao [3 ]
Lin, Wenhui [4 ]
Kang, Le [5 ]
Zhang, Yi [4 ]
Zhou, Yunlei [1 ,2 ]
Jiang, Shan [1 ,2 ]
机构
[1] Xidian Univ, Hangzhou Inst Technol, Hangzhou 311200, Peoples R China
[2] Xidian Univ, Sch Mechanoelect Engn, Xian 710071, Peoples R China
[3] Xian Univ Architecture & Technol, Sch Mat Sci & Engn, Xian 710061, Peoples R China
[4] Nanjing Tech Univ, Sch Energy Sci & Engn, Nanjing 211816, Peoples R China
[5] Xian Univ Sci & Technol, Coll Mat Sci & Engn, Xian 710054, Peoples R China
基金
中国国家自然科学基金;
关键词
fast-charging; Li dendrite; anode; lithium vanadate oxide; lithium-ion batteries; GRAPHITE; LI3VO4;
D O I
10.1515/ntrev-2023-0179
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Fast-charging technology is the inevitable trend for electric vehicles (EVs). Current EVs' lithium-ion batteries (LIBs) cannot provide ultrafast power input due to the capacity fading and safety hazards of graphite anode at high rates. Lithium vanadate oxide (Li3VO4) has been widely studied as fast-charging anode material due to its high capacity and stability at high rates. However, its highly safe characteristic under fast-charging has not been studied. In this study, a fast-charging anode material is synthesized by inserting Li(3)VO(4)in Ti3C2Tx MXene framework. The morphologies of Li3VO4/Ti3C2Tx electrode after cycling at different rates were studied to analyze the dendrites growth. Electrochemical testing results demonstrate that Li3VO4/Ti3C2Tx composite displays high capacities of 151.6 mA h g(-1) at 5 C and 87.8 mA h g(-1) at 10 C, which are much higher than that of commercial graphite anode (51.9 mA h g(-1) at 5 C and 17.0 mA h g(-1) at 10 C). Moreover, Li3VO4/Ti3C2Tx electrode does not generate Li dendrite at high rates (5 and 10 C) while commercial graphite electrode grows many Li dendrites under the same conditions, demonstrating fast-charging and high safety of Li3VO4/Ti3C2Tx composite. Our work inspires promising fast-charging anode material design for LIBs.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] The fast-charging properties of micro lithium-ion batteries for smart devices
    Gao, Xianggang
    Zhou, Hao
    Li, Shihao
    Chang, ShiLei
    Lai, Yanqing
    Zhang, Zhian
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 615 : 141 - 150
  • [42] Porous Co2VO4 Nanodisk as a High-Energy and Fast-Charging Anode for Lithium-Ion Batteries
    Ren, Jinghui
    Wang, Zhenyu
    Xu, Peng
    Wang, Cong
    Gao, Fei
    Zhao, Decheng
    Liu, Shupei
    Yang, Han
    Wang, Di
    Niu, Chunming
    Zhu, Yusong
    Wu, Yutong
    Liu, Xiang
    Wang, Zhoulu
    Zhang, Yi
    NANO-MICRO LETTERS, 2022, 14 (01)
  • [43] Solution-Processed MoS2-Expanded Graphite as a Fast-Charging Anode for Lithium-Ion Batteries
    Lobo, Kenneth
    Moolayadukkam, Sreejesh
    Vishwanathan, Savithri
    Matte, H. S. S. Ramakrishna
    CHEMISTRY-AN ASIAN JOURNAL, 2025, 20 (05)
  • [44] Porous Co2VO4 Nanodisk as a High-Energy and Fast-Charging Anode for Lithium-Ion Batteries
    Jinghui Ren
    Zhenyu Wang
    Peng Xu
    Cong Wang
    Fei Gao
    Decheng Zhao
    Shupei Liu
    Han Yang
    Di Wang
    Chunming Niu
    Yusong Zhu
    Yutong Wu
    Xiang Liu
    Zhoulu Wang
    Yi Zhang
    Nano-Micro Letters, 2022, 14
  • [45] Regulating Lithium Ion Transport by a Highly Stretchable Interface for Dendrite-Free Lithium Metal Batteries
    Zhao, Peiyu
    Kuang, Guoqing
    Qiao, Rui
    Liu, Kai
    Ajdari, Farshad Boorboor
    Sun, Kun
    Bao, Chonggao
    Salavati-Niasari, Masoud
    Song, Jiangxuan
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (08) : 10141 - 10148
  • [46] Fast-charging cathode materials for lithium & sodium ion batteries
    Yuan, Meimei
    Liu, Hongjun
    Ran, Fen
    MATERIALS TODAY, 2023, 63 : 360 - 379
  • [47] Fast Charging Anode Materials for Lithium-Ion Batteries: Current Status and Perspectives
    Li, Shengqiang
    Wang, Kai
    Zhang, Gefei
    Li, Shani
    Xu, Yanan
    Zhang, Xudong
    Zhang, Xiong
    Zheng, Shuanghao
    Sun, Xianzhong
    Ma, Yanwei
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (23)
  • [48] Establish TiNb2O7@C as Fast-Charging Anode for Lithium-Ion Batteries
    Gong, Shuya
    Wang, Yue
    Li, Meng
    Wen, Yuehua
    Xu, Bin
    Wang, Hong
    Qiu, Jingyi
    Li, Bin
    MATERIALS, 2023, 16 (01)
  • [49] Interface optimization mechanism and quantitative analysis of hybrid graphite anode for fast-charging lithium-ion batteries
    Gong, Haiqiang
    Du, Peng
    Zhang, Bao
    Xiao, Zhiming
    Ming, Lei
    Ou, Xing
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 678 : 472 - 481
  • [50] An Ion-Pumping Interphase on Graphdiyne/Graphite Heterojunction for Fast-Charging Lithium-Ion Batteries
    An, Juan
    Wang, Fan
    Yang, Jia-Yue
    Li, Guoxing
    Li, Yuliang
    CCS CHEMISTRY, 2024, 6 (01): : 110 - 124