Highly safe lithium vanadium oxide anode for fast-charging dendrite-free lithium-ion batteries

被引:1
|
作者
Zhang, Hao [3 ]
Lin, Wenhui [4 ]
Kang, Le [5 ]
Zhang, Yi [4 ]
Zhou, Yunlei [1 ,2 ]
Jiang, Shan [1 ,2 ]
机构
[1] Xidian Univ, Hangzhou Inst Technol, Hangzhou 311200, Peoples R China
[2] Xidian Univ, Sch Mechanoelect Engn, Xian 710071, Peoples R China
[3] Xian Univ Architecture & Technol, Sch Mat Sci & Engn, Xian 710061, Peoples R China
[4] Nanjing Tech Univ, Sch Energy Sci & Engn, Nanjing 211816, Peoples R China
[5] Xian Univ Sci & Technol, Coll Mat Sci & Engn, Xian 710054, Peoples R China
基金
中国国家自然科学基金;
关键词
fast-charging; Li dendrite; anode; lithium vanadate oxide; lithium-ion batteries; GRAPHITE; LI3VO4;
D O I
10.1515/ntrev-2023-0179
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Fast-charging technology is the inevitable trend for electric vehicles (EVs). Current EVs' lithium-ion batteries (LIBs) cannot provide ultrafast power input due to the capacity fading and safety hazards of graphite anode at high rates. Lithium vanadate oxide (Li3VO4) has been widely studied as fast-charging anode material due to its high capacity and stability at high rates. However, its highly safe characteristic under fast-charging has not been studied. In this study, a fast-charging anode material is synthesized by inserting Li(3)VO(4)in Ti3C2Tx MXene framework. The morphologies of Li3VO4/Ti3C2Tx electrode after cycling at different rates were studied to analyze the dendrites growth. Electrochemical testing results demonstrate that Li3VO4/Ti3C2Tx composite displays high capacities of 151.6 mA h g(-1) at 5 C and 87.8 mA h g(-1) at 10 C, which are much higher than that of commercial graphite anode (51.9 mA h g(-1) at 5 C and 17.0 mA h g(-1) at 10 C). Moreover, Li3VO4/Ti3C2Tx electrode does not generate Li dendrite at high rates (5 and 10 C) while commercial graphite electrode grows many Li dendrites under the same conditions, demonstrating fast-charging and high safety of Li3VO4/Ti3C2Tx composite. Our work inspires promising fast-charging anode material design for LIBs.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Amorphous Anode Materials for Fast-charging Lithium-ion Batteries
    Vishwanathan, Savithri
    Pandey, Harshit
    Ramakrishna Matte, H. S. S.
    CHEMISTRY-A EUROPEAN JOURNAL, 2024, 30 (22)
  • [2] Vanadium sulfide decorated at carbon matrix as anode materials for "fast-charging" lithium-ion batteries
    Wang, Lu
    Dang, Hao
    He, Tianqi
    Liu, Rui
    Wang, Rui
    Ran, Fen
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1002
  • [3] The principle and amelioration of lithium plating in fast-charging lithium-ion batteries
    Yang, Yi
    Zhong, Xia-Lin
    Xu, Lei
    Yang, Zhuo-Lin
    Yan, Chong
    Huang, Jia-Qi
    JOURNAL OF ENERGY CHEMISTRY, 2024, 97 : 453 - 459
  • [4] Kinetic limits and enhancement of graphite anode for fast-charging lithium-ion batteries
    Zhong C.
    Weng S.
    Wang Z.
    Zhan C.
    Wang X.
    Nano Energy, 2023, 117
  • [5] Inorganic lithium-ion conductors for fast-charging lithium batteries: a review
    Xue, Ning
    Zhang, Chang
    Liu, Wei
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2024,
  • [6] Kinetic Limits of Graphite Anode for Fast-Charging Lithium-Ion Batteries
    Suting Weng
    Gaojing Yang
    Simeng Zhang
    Xiaozhi Liu
    Xiao Zhang
    Zepeng Liu
    Mengyan Cao
    Mehmet Nurullah Ateş
    Yejing Li
    Liquan Chen
    Zhaoxiang Wang
    Xuefeng Wang
    Nano-Micro Letters, 2023, 15
  • [7] A Review on Electrode Materials of Fast-Charging Lithium-Ion batteries
    Zhang, Zhen
    Zhao, Decheng
    Xu, Yuanyuan
    Liu, Shupei
    Xu, Xiangyu
    Zhou, Jian
    Gao, Fei
    Tang, Hao
    Wang, Zhoulu
    Wu, Yutong
    Liu, Xiang
    Zhang, Yi
    CHEMICAL RECORD, 2022, 22 (10)
  • [8] Kinetic Limits of Graphite Anode for Fast-Charging Lithium-Ion Batteries
    Weng, Suting
    Yang, Gaojing
    Zhang, Simeng
    Liu, Xiaozhi
    Zhang, Xiao
    Liu, Zepeng
    Cao, Mengyan
    Ates, Mehmet Nurullah
    Li, Yejing
    Chen, Liquan
    Wang, Zhaoxiang
    Wang, Xuefeng
    NANO-MICRO LETTERS, 2023, 15 (01)
  • [9] Layered-Oxide Cathode Materials for Fast-Charging Lithium-Ion Batteries: A Review
    Meng, Xin
    Wang, Jiale
    Li, Le
    MOLECULES, 2023, 28 (10):
  • [10] "Fast-Charging" Anode Materials for Lithium-Ion Batteries from Perspective of Ion Diffusion in Crystal Structure
    Wang, Rui
    Wang, Lu
    Liu, Rui
    Li, Xiangye
    Wu, Youzhi
    Ran, Fen
    ACS NANO, 2024, 18 (04) : 2611 - 2648