Parameter identification of elastoplastic model for CuCrZr alloy by the neural network-aided Bayesian inference

被引:2
作者
Chen, Zhiwei [1 ,2 ]
Jin, Ping [1 ,2 ]
Li, Ruizhi [1 ,2 ]
Qi, Yaqun [1 ,3 ]
Cai, Guobiao [1 ,2 ]
机构
[1] Beihang Univ, Sch Astronaut, Beijing 100191, Peoples R China
[2] Beihang Univ, Key Lab Spacecraft Design Optimizat & Dynam Simul, Minist Educ, Beijing, Peoples R China
[3] China Manned Space Engn Off, Beijing, Peoples R China
关键词
Bayesian inference; elastoplastic model; neural network; parameter identification; ELASTIC-CONSTANTS; PLASTICITY; FRAMEWORK; ALGORITHM;
D O I
10.1111/ffe.14000
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The constitutive model serves as the foundation for executing structure analysis to obtain the deformation and stress/strain. In this paper, a neural network-assisted Bayesian parameter identification framework is presented to calibrate parameters of the constitutive model while considering the unavoidable uncertainties. The low-cycle fatigue test of the CuCrZr alloy at 700K is first performed to provide realistic data. The posterior distributions are obtained by applying the transitional Markov Chain Monte Carlo method. To accelerate the identification, the neural network is adopted to directly predict the likelihood function value given material parameters. The effect of prior distributions on the identification parameters is also studied. The characteristic parameters of the normal distribution have almost no effect on the identification results. In the absence of prior information, uniform prior distributions can be used to perform Bayesian identification of material parameters, and satisfactory identification parameters can also be acquired.
引用
收藏
页码:2319 / 2337
页数:19
相关论文
共 56 条
  • [1] Adeli E., 2017, Bayesian parameter identification in plasticity
  • [2] Bayesian Parameter Determination of a CT-Test Described by a Viscoplastic-Damage Model Considering the Model Error
    Adeli, Ehsan
    Rosic, Bojana
    Matthies, Hermann G.
    Reinstaedler, Sven
    Dinkler, Dieter
    [J]. METALS, 2020, 10 (09) : 1 - 18
  • [3] Comparison of Bayesian Methods on Parameter Identification for a Viscoplastic Model with Damage
    Adeli, Ehsan
    Rosic, Bojana
    Matthies, Hermann G.
    Reinstaedler, Sven
    Dinkler, Dieter
    [J]. METALS, 2020, 10 (07) : 1 - 25
  • [4] A computational framework for Bayesian inference in plasticity models characterisation
    Asaadi, Erfan
    Heyns, P. Stephan
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 321 : 455 - 481
  • [5] Determination of combined hardening material parameters under strain controlled cyclic loading by using the genetic algorithm method
    Badnava, H.
    Pezeshki, S. M.
    Nejad, Kh. Fallah
    Farhoudi, H. R.
    [J]. JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2012, 26 (10) : 3067 - 3072
  • [6] Experimental characterisation of a CuAg alloy for thermo-mechanical applications. Part 1: Identifying parameters of non-linear plasticity models
    Benasciutti, D.
    Novak, J. Srnec
    Moro, L.
    De Bona, F.
    Stanojevic, A.
    [J]. FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2018, 41 (06) : 1364 - 1377
  • [7] Bayesian inference for calibration and validation of uniaxial reinforcing steel models
    Birrell, Matias
    Astroza, Rodrigo
    Restrepo, Jose I.
    Loftizadeh, Koorosh
    Carreno, Rodrigo
    Bazaez, Ramiro
    Hernandez, Francisco
    [J]. ENGINEERING STRUCTURES, 2021, 243
  • [8] A comparison of deterministic and Bayesian inverse with application in micromechanics
    Blaheta, Radim
    Beres, Michal
    Domesova, Simona
    Pan, Pengzhi
    [J]. APPLICATIONS OF MATHEMATICS, 2018, 63 (06) : 665 - 686
  • [9] An experimental assessment of internal variables constitutive models for viscoelastic materials
    Borges, F. C. L.
    Castello, D. A.
    Magluta, C.
    Rochinha, F. A.
    Roitman, N.
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2015, 50-51 : 27 - 40
  • [10] A review of some plasticity and viscoplasticity constitutive theories
    Chaboche, J. L.
    [J]. INTERNATIONAL JOURNAL OF PLASTICITY, 2008, 24 (10) : 1642 - 1693