Graph contextualized self-attention network for software service sequential recommendation

被引:0
作者
Fu, Zixuan [1 ]
Wang, Chenghua [1 ]
Xu, Jiajie [1 ]
机构
[1] Soochow Univ, Sch Comp Sci & Technol, Suzhou, Peoples R China
来源
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE | 2023年 / 149卷
基金
中国国家自然科学基金;
关键词
Software Service Recommendation; Self Attention Network; GitHub Repository;
D O I
10.1016/j.future.2023.07.041
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
With the broad application of software services, an increasing number of developers are turning to social coding sites for constructing their applications or conducting further research. These software services generate spatiotemporal data with numerous unique features. GitHub, being the world's largest code hosting platform, is essential to efficiently provide recommendation services for its users. In order to make accurate recommendations and establish effective user-item and item-item rela-tionships, we propose a Graph Contextualized Self-attention Network for Software Service Sequential Recommendation (GCSAN). This model captures global repository-to-repository relationships based on contextual information and recommends suitable repositories to users. Specifically, we leverage the relationships between repositories in all behavior sequences and graph embedding technique to alleviate the data sparsity problem. Moreover, we employ a self attention mechanism to capture user's repository preferences at different time points, assigning varying weights accordingly. Finally, the experimental results on real-world datasets demonstrate the superior performance of our proposed model compared to benchmark recommendation methods.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:509 / 517
页数:9
相关论文
共 33 条
  • [1] Modeling Periodic Pattern with Self-Attention Network for Sequential Recommendation
    Ma, Jun
    Zhao, Pengpeng
    Liu, Yanchi
    Sheng, Victor S.
    Xu, Jiajie
    Zhao, Lei
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2020), PT III, 2020, 12114 : 557 - 572
  • [2] A Dual-View Knowledge Enhancing Self-Attention Network for Sequential Recommendation
    Tang, Hao
    Zhang, Feng
    Xu, Xinhai
    Zhang, Jieyuan
    Liu, Donghong
    2022 IEEE 34TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2022, : 832 - 839
  • [3] Long- and short-term self-attention network for sequential recommendation
    Xu, Chengfeng
    Feng, Jian
    Zhao, Pengpeng
    Zhuang, Fuzhen
    Wang, Deqing
    Liu, Yanchi
    Sheng, Victor S.
    NEUROCOMPUTING, 2021, 423 : 580 - 589
  • [4] Feature-Level Deeper Self-Attention Network With Contrastive Learning for Sequential Recommendation
    Hao, Yongjing
    Zhang, Tingting
    Zhao, Pengpeng
    Liu, Yanchi
    Sheng, Victor S.
    Xu, Jiajie
    Liu, Guanfeng
    Zhou, Xiaofang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (10) : 10112 - 10124
  • [5] Spiking neural self-attention network for sequence recommendation
    Bai, Xinzhu
    Huang, Yanping
    Peng, Hong
    Yang, Qian
    Wang, Jun
    Liu, Zhicai
    APPLIED SOFT COMPUTING, 2025, 169
  • [6] Integrating the Pre-trained Item Representations with Reformed Self-attention Network for Sequential Recommendation
    Liang, Guanzhong
    Liao, Jie
    Zhou, Wei
    Wen, Junhao
    2022 IEEE INTERNATIONAL CONFERENCE ON WEB SERVICES (IEEE ICWS 2022), 2022, : 27 - 36
  • [7] SanMove: next location recommendation via self-attention network
    Wang, Bin
    Li, Huifeng
    Tong, Le
    Zhang, Qian
    Zhu, Sulei
    Yang, Tao
    DATA TECHNOLOGIES AND APPLICATIONS, 2023, 57 (03) : 330 - 343
  • [8] Self-Attention Network for Session-Based Recommendation With Streaming Data Input
    Sun, Shiming
    Tang, Yuanhe
    Dai, Zemei
    Zhou, Fu
    IEEE ACCESS, 2019, 7 : 110499 - 110509
  • [9] MGSAN: multimodal graph self-attention network for skeleton-based action recognition
    Wang, Junyi
    Li, Ziao
    Liu, Bangli
    Cai, Haibin
    Saada, Mohamad
    Meng, Qinggang
    MULTIMEDIA SYSTEMS, 2024, 30 (06)
  • [10] MGSAN: multimodal graph self-attention network for skeleton-based action recognitionMGSAN: multimodal graph self-attention network for skeleton-based action recognitionJ. Wang et al.
    Junyi Wang
    Ziao Li
    Bangli Liu
    Haibin Cai
    Mohamad Saada
    Qinggang Meng
    Multimedia Systems, 2024, 30 (6)