Bioinspired Hydrophobicity for Enhancing Electrochemical CO2 Reduction

被引:8
作者
Bai, Jingwen [1 ,2 ]
Wang, Wenshuo [2 ]
Liu, Jian [1 ,2 ]
机构
[1] Qingdao Univ Sci & Technol, Coll Mat Sci & Engn, Qingdao 266042, Peoples R China
[2] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Shandong Energy Inst, Qingdao New Energy Shandong Lab, R China, Qingdao 266101, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; reduction; electrochemistry; local concentration; enrichment; hydrophobic effect; GAS-DIFFUSION ELECTRODES; METAL-ORGANIC FRAMEWORKS; CARBON-DIOXIDE REDUCTION; ELECTROREDUCTION PERFORMANCE; OXYGEN VACANCIES; EFFICIENT; CU; CONVERSION; ETHYLENE; CATALYST;
D O I
10.1002/chem.202302461
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrochemical carbon dioxide reduction (CO2R) is a promising pathway for converting greenhouse gasses into valuable fuels and chemicals using intermittent renewable energy. Enormous efforts have been invested in developing and designing CO2R electrocatalysts suitable for industrial applications at accelerated reaction rates. The microenvironment, specifically the local CO2 concentration (local [CO2]) as well as the water and ion transport at the CO2-electrolyte-catalyst interface, also significantly impacts the current density, Faradaic efficiency (FE), and operation stability. In nature, hydrophobic surfaces of aquatic arachnids trap appreciable amounts of gases due to the "plastron effect", which could inspire the reliable design of CO2R catalysts and devices to enrich gaseous CO2. In this review, starting from the wettability modulation, we summarize CO2 enrichment strategies to enhance CO2R. To begin, superwettability systems in nature and their inspiration for concentrating CO2 in CO2R are described and discussed. Moreover, other CO2 enrichment strategies, compatible with the hydrophobicity modulation, are explored from the perspectives of catalysts, electrolytes, and electrolyzers, respectively. Finally, a perspective on the future development of CO2 enrichment strategies is provided. We envision that this review could provide new guidance for further developments of CO2R toward practical applications.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Efficient Electrochemical Reduction of CO2 to CO in Ionic Liquids
    Hu, Yanjie
    Feng, Jiaqi
    Zhang, Xiangping
    Gao, Hongshuai
    Jin, Saimeng
    Liu, Lei
    Shen, Weifeng
    CHEMISTRYSELECT, 2021, 6 (37): : 9873 - 9879
  • [32] Electrochemical Reduction of CO2 to Ethane through Stabilization of an Ethoxy Intermediate
    Vasileff, Anthony
    Zhu, Yanping
    Zhi, Xing
    Zhao, Yongqiang
    Ge, Lei
    Chen, Hao Ming
    Zheng, Yao
    Qiao, Shi-Zhang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (44) : 19649 - 19653
  • [33] Reactivity Determinants in Electrodeposited Cu Foams for Electrochemical CO2 Reduction
    Klingan, Katharina
    Kottakkat, Tintula
    Jovanov, Zarko P.
    Jiang, Shan
    Pasquini, Chiara
    Scholten, Fabian
    Kubella, Paul
    Bergmann, Arno
    Roldan Cuenya, Beatriz
    Roth, Christina
    Dau, Holger
    CHEMSUSCHEM, 2018, 11 (19) : 3449 - 3459
  • [34] Designing Membrane Electrode Assembly for Electrochemical CO2 Reduction: a Review
    Wang, Xuerong
    Zhao, Shulin
    Guo, Tao
    Yang, Luyao
    Zhao, Qianqian
    Wu, Yuping
    Chen, Yuhui
    TRANSACTIONS OF TIANJIN UNIVERSITY, 2024, 30 (02) : 117 - 129
  • [35] Cu-Based Organic-Inorganic Composite Materials for Electrochemical CO2 Reduction
    Hou, Man
    Shi, Yong Xia
    Li, Jun Jun
    Gao, Zengqiang
    Zhang, Zhicheng
    CHEMISTRY-AN ASIAN JOURNAL, 2022, 17 (18)
  • [36] Local CO Generator Enabled by a CO-Producing Core for Kinetically Enhancing Electrochemical CO2 Reduction to Multicarbon Products
    Song, Jia
    Zhang, Hongbo
    Sun, Rongbo
    Liu, Peigen
    Ma, Xianhui
    Chen, Cai
    Guo, Wenxin
    Zheng, Xusheng
    Zhou, Huang
    Gao, Yong
    Cui, Wengang
    Pan, Hongge
    Zhang, Zhuhua
    Wu, Yuen
    ACS NANO, 2024, 18 (17) : 11416 - 11424
  • [37] Electrochemical CO2 Reduction: Commercial Innovations and Prospects
    Varhade, Swapnil
    Guruji, Avni
    Singh, Chandani
    Cicero, Giancarlo
    Garcia-Melchor, Max
    Helsen, Joost
    Pant, Deepak
    CHEMELECTROCHEM, 2025, 12 (02):
  • [38] Electrochemical CO2 Reduction: Classifying Cu Facets
    Bagger, Alexander
    Ju, Wen
    Sofia Varela, Ana
    Strasser, Peter
    Rossmeisl, Jan
    ACS CATALYSIS, 2019, 9 (09) : 7894 - 7899
  • [39] Controlling the Product Syngas H2:CO Ratio through Pulsed-Bias Electrochemical Reduction of CO2 on Copper
    Kumar, Bijandra
    Brian, Joseph P.
    Atla, Veerendra
    Kumari, Sudesh
    Bertram, Kari A.
    White, Robert T.
    Spurgeon, Joshua M.
    ACS CATALYSIS, 2016, 6 (07): : 4739 - 4745
  • [40] Electric Field Effects in Electrochemical CO2 Reduction
    Chen, Leanne D.
    Urushihara, Makoto
    Chan, Karen
    Norskov, Jens K.
    ACS CATALYSIS, 2016, 6 (10): : 7133 - 7139