Bioinspired Hydrophobicity for Enhancing Electrochemical CO2 Reduction

被引:8
作者
Bai, Jingwen [1 ,2 ]
Wang, Wenshuo [2 ]
Liu, Jian [1 ,2 ]
机构
[1] Qingdao Univ Sci & Technol, Coll Mat Sci & Engn, Qingdao 266042, Peoples R China
[2] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Shandong Energy Inst, Qingdao New Energy Shandong Lab, R China, Qingdao 266101, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; reduction; electrochemistry; local concentration; enrichment; hydrophobic effect; GAS-DIFFUSION ELECTRODES; METAL-ORGANIC FRAMEWORKS; CARBON-DIOXIDE REDUCTION; ELECTROREDUCTION PERFORMANCE; OXYGEN VACANCIES; EFFICIENT; CU; CONVERSION; ETHYLENE; CATALYST;
D O I
10.1002/chem.202302461
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrochemical carbon dioxide reduction (CO2R) is a promising pathway for converting greenhouse gasses into valuable fuels and chemicals using intermittent renewable energy. Enormous efforts have been invested in developing and designing CO2R electrocatalysts suitable for industrial applications at accelerated reaction rates. The microenvironment, specifically the local CO2 concentration (local [CO2]) as well as the water and ion transport at the CO2-electrolyte-catalyst interface, also significantly impacts the current density, Faradaic efficiency (FE), and operation stability. In nature, hydrophobic surfaces of aquatic arachnids trap appreciable amounts of gases due to the "plastron effect", which could inspire the reliable design of CO2R catalysts and devices to enrich gaseous CO2. In this review, starting from the wettability modulation, we summarize CO2 enrichment strategies to enhance CO2R. To begin, superwettability systems in nature and their inspiration for concentrating CO2 in CO2R are described and discussed. Moreover, other CO2 enrichment strategies, compatible with the hydrophobicity modulation, are explored from the perspectives of catalysts, electrolytes, and electrolyzers, respectively. Finally, a perspective on the future development of CO2 enrichment strategies is provided. We envision that this review could provide new guidance for further developments of CO2R toward practical applications.
引用
收藏
页数:19
相关论文
共 230 条
[81]   Bioinspired Superwettability Micro/Nanoarchitectures: Fabrications and Applications [J].
Kong, Tiantian ;
Luo, Guanyi ;
Zhao, Yuanjin ;
Liu, Zhou .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (11)
[82]   Controlling the Product Syngas H2:CO Ratio through Pulsed-Bias Electrochemical Reduction of CO2 on Copper [J].
Kumar, Bijandra ;
Brian, Joseph P. ;
Atla, Veerendra ;
Kumari, Sudesh ;
Bertram, Kari A. ;
White, Robert T. ;
Spurgeon, Joshua M. .
ACS CATALYSIS, 2016, 6 (07) :4739-4745
[83]   Superhydrophobic states [J].
Lafuma, A ;
Quéré, D .
NATURE MATERIALS, 2003, 2 (07) :457-460
[84]   New Insights Into the Role of Imidazolium-Based Promoters for the Electroreduction of CO2 on a Silver Electrode [J].
Lau, Genevieve P. S. ;
Schreier, Marcel ;
Vasilyev, Drnitry ;
Scopelliti, Rosario ;
Gratzel, Michael ;
Dyson, Paul J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (25) :7820-7823
[85]   Electrochemical upgrade of CO2 from amine capture solution [J].
Lee, Geonhui ;
Li, Yuguang C. ;
Kim, Ji-Yong ;
Peng, Tao ;
Nam, Dae-Hyun ;
Sedighian Rasouli, Armin ;
Li, Fengwang ;
Luo, Mingchuan ;
Ip, Alexander H. ;
Joo, Young-Chang ;
Sargent, Edward H. .
NATURE ENERGY, 2021, 6 (01) :46-53
[86]   Investigating Electrode Flooding in a Flowing Electrolyte, Gas-Fed Carbon Dioxide Electrolyzer [J].
Leonard, McLain E. ;
Clarke, Lauren E. ;
Forner-Cuenca, Antoni ;
Brown, Steven M. ;
Brushett, Fikile R. .
CHEMSUSCHEM, 2020, 13 (02) :400-411
[87]   Development of catalysts and electrolyzers toward industrial-scale CO2 electroreduction [J].
Li, Geng ;
Liu, Yong ;
Zhang, Qiang ;
Hu, Qiushi ;
Guo, Weihua ;
Cao, Xiaohu ;
Dou, Yubing ;
Cheng, Le ;
Song, Yun ;
Su, Jianjun ;
Huang, Libei ;
Ye, Ruquan .
JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (37) :19254-19277
[88]   Photothermally activated multifunctional MoS2 bactericidal nanoplatform for combined chemo/photothermal/photodynamic triple-mode therapy of bacterial and biofilm infections [J].
Li, Huan ;
Gong, Minhui ;
Xiao, Jiayu ;
Hai, Luo ;
Luo, Yuze ;
He, Lidan ;
Wang, Zefeng ;
Deng, Le ;
He, Dinggeng .
CHEMICAL ENGINEERING JOURNAL, 2022, 429
[89]   Electroreduction of CO2 to Formate on a Copper-Based Electrocatalyst at High Pressures with High Energy Conversion Efficiency [J].
Li, Jiachen ;
Kuang, Yun ;
Meng, Yongtao ;
Tian, Xin ;
Hung, Wei-Hsuan ;
Zhang, Xiao ;
Li, Aowen ;
Xu, Mingquan ;
Zhou, Wu ;
Ku, Ching-Shun ;
Chiang, Ching-Yu ;
Zhu, Guanzhou ;
Guo, Jinyu ;
Sun, Xiaoming ;
Dai, Hongjie .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (16) :7276-7282
[90]   Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction [J].
Li, Jun ;
Wang, Ziyun ;
McCallum, Christopher ;
Xu, Yi ;
Li, Fengwang ;
Wang, Yuhang ;
Gabardo, Christine M. ;
Cao-Thang Dinh ;
Zhuang, Tao-Tao ;
Wang, Liang ;
Howe, Jane Y. ;
Ren, Yang ;
Sargent, Edward H. ;
Sinton, David .
NATURE CATALYSIS, 2019, 2 (12) :1124-1131