Spectral quantitative and semi-quantitative EEG provide complementary information on the life-long effects of early childhood malnutrition on cognitive decline

被引:2
作者
Razzaq, Fuleah A. [1 ]
Calzada-Reyes, Ana [2 ]
Tang, Qin [1 ]
Guo, Yanbo [1 ]
Rabinowitz, Arielle G. [3 ]
Bosch-Bayard, Jorge [4 ]
Galan-Garcia, Lidice [2 ]
Virues-Alba, Trinidad [2 ]
Suarez-Murias, Carlos [2 ]
Miranda, Ileana [5 ]
Riaz, Usama [1 ]
Bernardo Lagomasino, Vivian [6 ]
Bryce, Cyralene [7 ]
Anderson, Simon G. [7 ,8 ]
Galler, Janina R. [7 ,9 ]
Bringas-Vega, Maria L. [1 ]
Valdes-Sosa, Pedro A. [1 ,2 ]
机构
[1] Univ Elect Sci & Technol China, Clin Hosp, Chengdu Brain Sci Inst, MOE Key Lab Neuroinformat, Chengdu, Peoples R China
[2] Cuban Neurosci Ctr, Havana, Cuba
[3] McGill Univ, Montreal Neurol Inst, Montreal, PQ, Canada
[4] Univ Autonoma Madrid, Fac Psychol, Madrid, Spain
[5] CENSA, Natl Ctr Anim & Plant Hlth, San Jose De Las Lajas, Mayabeque, Cuba
[6] Univ La Habana, Fac Psicol, Havana, Cuba
[7] Univ West Indies, Caribbean Inst Hlth Res, George Alleyne Chron Dis Res Ctr, Cave Hill, Barbados
[8] Univ West Indies, Caribbean Inst Hlth Res, George Alleyne Chron Dis Res Ctr, Cave Hill, Barbados
[9] MassGeneral Hosp Children, Div Pediat Gastroenterol & Nutr, Boston, MA 02114 USA
基金
美国国家卫生研究院;
关键词
malnutrition; EEG; qEEG; grand total EEG; latent variable; item response theory; cognitive decline; EPILEPTIFORM DISCHARGES; ADULTS; MALTREATMENT; EXPERIENCES; DEMENTIA; CHILDREN; PACKAGE; SCORE;
D O I
10.3389/fnins.2023.1149102
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Objective This study compares the complementary information from semi-quantitative EEG (sqEEG) and spectral quantitative EEG (spectral-qEEG) to detect the life-long effects of early childhood malnutrition on the brain.Methods Resting-state EEGs (N = 202) from the Barbados Nutrition Study (BNS) were used to examine the effects of protein-energy malnutrition (PEM) on childhood and middle adulthood outcomes. sqEEG analysis was performed on Grand Total EEG (GTE) protocol, and a single latent variable, the semi-quantitative Neurophysiological State (sqNPS) was extracted. A univariate linear mixed-effects (LME) model tested the dependence of sqNPS and nutritional group. sqEEG was compared with scores on the Montreal Cognitive Assessment (MoCA). Stable sparse classifiers (SSC) also measured the predictive power of sqEEG, spectral-qEEG, and a combination of both. Multivariate LME was applied to assess each EEG modality separately and combined under longitudinal settings.Results The univariate LME showed highly significant differences between previously malnourished and control groups (p < 0.001); age (p = 0.01) was also significant, with no interaction between group and age detected. Childhood sqNPS (p = 0.02) and adulthood sqNPS (p = 0.003) predicted MoCA scores in adulthood. The SSC demonstrated that spectral-qEEG combined with sqEEG had the highest predictive power (mean AUC 0.92 +/- 0.005). Finally, multivariate LME showed that the combined spectral-qEEG+sqEEG models had the highest log-likelihood (-479.7).Conclusion This research has extended our prior work with spectral-qEEG and the long-term impact of early childhood malnutrition on the brain. Our findings showed that sqNPS was significantly linked to accelerated cognitive aging at 45-51 years of age. While sqNPS and spectral-qEEG produced comparable results, our study indicated that combining sqNPS and spectral-qEEG yielded better performance than either method alone, suggesting that a multimodal approach could be advantageous for future investigations.Significance Based on our findings, a semi-quantitative approach utilizing GTE could be a valuable diagnostic tool for detecting the lasting impacts of childhood malnutrition. Notably, sqEEG has not been previously explored or reported as a biomarker for assessing the longitudinal effects of malnutrition. Furthermore, our observations suggest that sqEEG offers unique features and information not captured by spectral quantitative EEG analysis and could lead to its improvement.
引用
收藏
页数:15
相关论文
共 76 条
[31]  
Hollingshead A.B., 1963, PERSONALITY SOCIAL S, P314
[32]   NEUROMETRICS [J].
JOHN, ER ;
KARMEL, BZ ;
CORNING, WC ;
EASTON, P ;
BROWN, D ;
AHN, H ;
JOHN, M ;
HARMONY, T ;
PRICHEP, L ;
TORO, A ;
GERSON, I ;
BARTLETT, F ;
THATCHER, R ;
KAYE, H ;
VALDES, P ;
SCHWARTZ, E .
SCIENCE, 1977, 196 (4297) :1393-1410
[33]  
Jonkman EJ., 1989, Electroencephalogr Clin Neurophysiol, V72, P34
[34]  
Kane N, 2017, CLIN NEUROPHYS PRACT, V2, P170, DOI 10.1016/j.cnp.2017.07.002
[35]   Nutritional Deficiency in Early Life Facilitates Aging-Associated Cognitive Decline [J].
Kang, Yu ;
Zhang, Yun ;
Feng, Zijuan ;
Liu, Mingjing ;
Li, Yanhua ;
Yang, Huan ;
Wang, Dan ;
Zheng, Lingling ;
Lou, Dandan ;
Cheng, Liangping ;
Chen, Chunjiang ;
Zhou, Weitao ;
Feng, Yi ;
Li, Xiaoyong ;
Duan, Jianzhong ;
Yu, Mengjiao ;
Yang, Shou ;
Liu, Yuhang ;
Wang, Xin ;
Deng, Bo ;
Liu, Chenghui ;
Yao, Xiuqing ;
Zhu, Chi ;
Liang, Chunrong ;
Zeng, Xiaolong ;
Ren, Sisi ;
Li, Qunying ;
Zhong, Yin ;
Zhang, Yong ;
Kang, Jun ;
Yan, Yong ;
Meng, Huaqing ;
Zhong, Zhaohui ;
Zhou, Weihui ;
Wang, Yanjiang ;
Li, Tingyu ;
Song, Weihong .
CURRENT ALZHEIMER RESEARCH, 2017, 14 (08) :841-849
[36]   Criteria for defining interictal epileptiform discharges in EEG: A clinical validation study [J].
Kural, Mustafa Aykut ;
Duez, Lene ;
Sejer Hansen, Vibeke ;
Larsson, Pal G. ;
Rampp, Stefan ;
Schulz, Reinhard ;
Tankisi, Hatice ;
Wennberg, Richard ;
Bibby, Bo M. ;
Scherg, Michael ;
Beniczky, Sandor .
NEUROLOGY, 2020, 94 (20) :E2139-E2147
[37]   Attrition in a 30-year follow-up of a perinatal birth risk cohort: factors change with age [J].
Launes, Jyrki ;
Hokkanen, Laura ;
Laasonen, Marja ;
Tuulio-Henriksson, Annamari ;
Virta, Maarit ;
Lipsanen, Jari ;
Tienari, Pentti J. ;
Michelsson, Katarina .
PEERJ, 2014, 2
[38]   Harmonized-Multinational qEEG norms (HarMNqEEG) [J].
Li, Min ;
Wang, Ying ;
Lopez-Naranjo, Carlos ;
Hu, Shiang ;
Reyes, Ronaldo Cesar Garcia ;
Paz-Linares, Deirel ;
Areces-Gonzalez, Ariosky ;
Hamid, Aini Ismafairus Abd ;
Evans, Alan C. ;
Savostyanov, Alexander N. ;
Calzada-Reyes, Ana ;
Villringer, Arno ;
Tobon-Quintero, Carlos A. ;
Garcia-Agustin, Daysi ;
Yao, Dezhong ;
Dong, Li ;
Aubert-Vazquez, Eduardo ;
Reza, Faruque ;
Razzaq, Fuleah Abdul ;
Omar, Hazim ;
Abdullah, Jafri Malin ;
Galler, Janina R. ;
Ochoa-Gomez, John F. ;
Prichep, Leslie S. ;
Galan-Garcia, Lidice ;
Morales-Chacon, Lilia ;
Valdes-Sosa, Mitchell J. ;
Trondle, Marius ;
Zulkifly, Mohd Faizal Mohd ;
Rahman, Muhammad Riddha Bin Abdul ;
Milakhina, Natalya S. ;
Langer, Nicolas ;
Rudych, Pavel ;
Koenig, Thomas ;
Virues-Alba, Trinidad A. ;
Lei, Xu ;
Bringas-Vega, Maria L. ;
Bosch-Bayard, Jorge F. ;
Valdes-Sosa, Pedro Antonio .
NEUROIMAGE, 2022, 256
[39]   An index of local sensitivity to nonignorable drop-out in longitudinal modelling [J].
Ma, GG ;
Troxel, AB ;
Heitjan, DF .
STATISTICS IN MEDICINE, 2005, 24 (14) :2129-2150
[40]  
Marcuse L.V., 2016, Rowan's primer of eeg