Parameter Inference for Coalescing Massive Black Hole Binaries Using Deep Learning

被引:4
作者
Ruan, Wenhong [1 ,2 ]
Wang, He [3 ,4 ]
Liu, Chang [1 ,2 ]
Guo, Zongkuan [1 ,2 ,5 ]
机构
[1] Univ Chinese Acad Sci, Hangzhou Inst Adv Study, Sch Fundamental Phys & Math Sci, Hangzhou 310024, Peoples R China
[2] Univ Chinese Acad Sci, Sch Phys Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China
[3] Univ Chinese Acad Sci, Int Ctr Theoret Phys Asia Pacific, Beijing 100049, Peoples R China
[4] Univ Chinese Acad Sci, Taiji Lab Gravitat Wave Universe, Beijing 100049, Peoples R China
[5] Chinese Acad Sci, Inst Theoret Phys, CAS Key Lab Theoret Phys, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
gravitational wave; artificial intelligence; machine learning; coalescence of binary compact objects;
D O I
10.3390/universe9090407
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In the 2030s, a new era of gravitational wave (GW) observations will dawn as multiple space-based GW detectors, such as the Laser Interferometer Space Antenna, Taiji, and TianQin, will open the millihertz window for GW astronomy. These detectors are poised to detect a multitude of GW signals emitted by different sources. It is a challenging task for GW data analysis to recover the parameters of these sources at a low computational cost. Generally, the matched filtering approach entails exploring an extensive parameter space for all resolvable sources, incurring a substantial cost owing to the generation of GW waveform templates. To alleviate the challenge, we make an attempt to perform parameter inference for coalescing massive black hole binaries (MBHBs) using deep learning. The model trained in this work has the capability to produce 50,000 posterior samples for the redshifted total mass, mass ratio, coalescence time, and luminosity distance of an MBHB in about twenty seconds. Our model can serve as an effective data pre-processing tool, reducing the volume of parameter space by more than four orders of magnitude for MBHB signals with a signal-to-noise ratio larger than 100. Moreover, the model exhibits robustness when handling input data that contain multiple MBHB signals.
引用
收藏
页数:11
相关论文
共 41 条
  • [1] GW150914: First results from the search for binary black hole coalescence with Advanced LIGO
    Abbott, B. P.
    Abbott, R.
    Abbott, T. D.
    Abernathy, M. R.
    Acernese, F.
    Ackley, K.
    Adams, C.
    Adams, T.
    Addesso, P.
    Adhikari, R. X.
    Adya, V. B.
    Affeldt, C.
    Agathos, M.
    Agatsuma, K.
    Aggarwal, N.
    Aguiar, O. D.
    Aiello, L.
    Ain, A.
    Ajith, P.
    Allen, B.
    Allocca, A.
    Altin, P. A.
    Anderson, S. B.
    Anderson, W. G.
    Arai, K.
    Araya, M. C.
    Arceneaux, C. C.
    Areeda, J. S.
    Arnaud, N.
    Arun, K. G.
    Ascenzi, S.
    Ashton, G.
    Ast, M.
    Aston, S. M.
    Astone, P.
    Aufmuth, P.
    Aulbert, C.
    Babak, S.
    Bacon, P.
    Bader, M. K. M.
    Baker, P. T.
    Baldaccini, F.
    Ballardin, G.
    Ballmer, S. W.
    Barayoga, J. C.
    Barclay, S. E.
    Barish, B. C.
    Barker, D.
    Barone, F.
    Barr, B.
    [J]. PHYSICAL REVIEW D, 2016, 93 (12)
  • [2] Adam J, 2016, PHYS REV LETT, V116, DOI [10.1103/PhysRevLett.116.241103, 10.1103/PhysRevLett.116.222302]
  • [3] Planck 2015 results XIII. Cosmological parameters
    Ade, P. A. R.
    Aghanim, N.
    Arnaud, M.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartlett, J. G.
    Bartolo, N.
    Battaner, E.
    Battye, R.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Challinor, A.
    Chamballu, A.
    Chary, R. -R.
    Chiang, H. C.
    Chluba, J.
    Christensen, P. R.
    Church, S.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    [J]. ASTRONOMY & ASTROPHYSICS, 2016, 594
  • [4] FINDCHIRP: An algorithm for detection of gravitational waves from inspiraling compact binaries
    Allen, Bruce
    Anderson, Warren G.
    Brady, Patrick R.
    Brown, Duncan A.
    Creighton, Jolien D. E.
    [J]. PHYSICAL REVIEW D, 2012, 85 (12):
  • [5] Amaro-Seoane P, 2017, Arxiv, DOI arXiv:1702.00786
  • [6] Babak S., 2018, LISA DATA CHALLENGE
  • [7] Learning Bayesian Posteriors with Neural Networks for Gravitational-Wave Inference
    Chua, Alvin J. K.
    Vallisneri, Michele
    [J]. PHYSICAL REVIEW LETTERS, 2020, 124 (04)
  • [8] Low latency detection of massive black hole binaries
    Cornish, Neil J.
    [J]. PHYSICAL REVIEW D, 2022, 105 (04)
  • [9] LISA data analysis using Markov chain Monte Carlo methods
    Cornish, NJ
    Crowder, J
    [J]. PHYSICAL REVIEW D, 2005, 72 (04): : 1 - 15
  • [10] Real-Time Gravitational Wave Science with Neural Posterior Estimation
    Dax, Maximilian
    Green, Stephen R.
    Gair, Jonathan
    Macke, Jakob H.
    Buonanno, Alessandra
    Schoelkopf, Bernhard
    [J]. PHYSICAL REVIEW LETTERS, 2021, 127 (24)