Network Pharmacology and Molecular Docking Analysis Exploring the Mechanism of Tripterygium wilfordii in the Treatment of Oral Lichen Planus

被引:1
作者
Huang, Wenkai [1 ]
Huang, Xu [1 ]
Yang, Lin [1 ]
Han, Wenjia [1 ]
Zhu, Zhongqing [1 ]
Wang, Yuanyin [1 ]
Chen, Ran [1 ]
机构
[1] Anhui Med Univ, Coll & Hosp Stomatol, Key Lab Oral Dis Res Anhui Prov, 81 Meishan Rd, Hefei 230032, Peoples R China
来源
MEDICINA-LITHUANIA | 2023年 / 59卷 / 08期
关键词
Tripterygium wilfordii; oral lichen planus; network pharmacology; molecular docking; PATHWAY; INFLAMMATION; INJURY; SERUM;
D O I
10.3390/medicina59081448
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Oral lichen planus (OLP) is an infrequent autoimmune disease of the oralmucosa, which affects up to 2% of the world population. An investigation of Tripterygium wilfordii ' s mechanism of action for treating OLP was conducted, and a theoretical basis was provided for improving current treatment regimens. Materials and Methods: We used a network pharmacological approach to gain insight into the molecular mechanism of Tripterygium wilfordii in the treatment of OLP. Then, potential protein targets between Tripterygium wilfordii and OLP were analyzed through a drug-target network. This was followed by KEGG enrichment analysis and Gene Ontology (GO) classification. Finally, for molecular docking, AutoDock Vina was used. Results: A protein-protein interaction (PPI) network was constructed by analyzing the common targets of a total of 51 wilfordii-OLP interactions from different databases. The GO and KEGG enrichment analyses showed that the treatment of OLP with Tripterygium wilfordii mainly involves lipopolysaccharide response, bacterial molecular response, positive regulation of cytokine production, and leukocyte proliferation, and the signaling pathways mainly include the AGE-RAGE, NF-kappa B, Toll-like receptor, IL-17, HIF-1, and TNF signaling pathways. The molecular docking results showed that beta-sitosterol, kaempferol, hederagenin, and triptolide have a higher affinity for AKT1, TNF, CASP3, and PTGS2, respectively. Based on the CytoNCA analysis of common targets, 19 key targets, including AKT1, TNF, VEGFA, STAT3, CXCL8, PTGS2, TP53, and CASP3, and their connections were identified. Conclusions: Preliminarily, this study reveals that Tripterygium wilfordii interferes with OLP by interacting with multiple targets through multiple accesses, as validated by molecular docking.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Exploring the mechanism of curcumin in the treatment of doxorubicin-induced cardiotoxicity based on network pharmacology and molecular docking technology
    Hu, Zhen
    MEDICINE, 2024, 103 (07) : E36593
  • [32] Exploring the mechanism of Danggui Sini Decoction in the treatment of myocardial infarction: A systematic review, network pharmacology, and molecular docking
    Li, Zhenzhen
    Liu, Shuang
    Zhang, Rui
    Li, Bing
    MEDICINE, 2024, 103 (42) : e40073
  • [33] Exploring the mechanism of Liang Xue Wu Hua Tang in the treatment of rosacea via network pharmacology and molecular docking
    Cui, Can
    Fan, Zhu
    MEDICINE, 2024, 103 (26) : e38705
  • [34] Exploring the action mechanism of Jinxin oral liquid on asthma by network pharmacology, molecular docking, and microRNA recognition
    Chen, Jing
    Zhu, Qiaozhen
    Mo, Yanling
    Ling, Hao
    Wang, Yan
    Xie, Huihui
    Li, Lan
    MEDICINE, 2023, 102 (43) : E35438
  • [35] Exploring the mechanism of genistein in treating hepatocellular carcinoma through network pharmacology and molecular docking
    Wang, Siliang
    Chen, Wenlian
    Dong, Changsheng
    Wu, Jia
    Zheng, Miaomiao
    Ma, Yushui
    Xue, Yuwen
    ONCOLOGIE, 2024, 26 (05) : 799 - 811
  • [36] Exploring the Mechanism of White Peony in the Treatment of Lupus Nephritis Based on Network Pharmacology and Molecular Docking
    Cao, Yao
    Wang, Chaoban
    Dong, Liqun
    ARCHIVOS ESPANOLES DE UROLOGIA, 2023, 76 (02): : 123 - 131
  • [37] Exploring Mechanism of Pelargonidin in Treatment of Pediatric Pneumonia Based on Network Pharmacology Combined with Molecular Docking
    Wu, Yanli
    Ling, Yinfei
    Hong, Huijuan
    Chen, Yun
    INTERNATIONAL JOURNAL OF PHARMACOLOGY, 2024, 20 (07)
  • [38] Exploring the Mechanism of Bufei Decoction in the Treatment of Bronchial Asthma Based on Network Pharmacology and Molecular Docking
    Han, Yong-Guang
    Lv, Xing
    Tan, Ya-Lan
    Ding, Yun-Shan
    Zhang, Chao-Yun
    Bian, Hua
    COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, 2024, : 768 - 780
  • [39] Exploring the mechanism of Xiaoqinglong decoction in the treatment of infantile asthma based on network pharmacology and molecular docking
    Chen, Daman
    Chen, Qiqi
    Zhao, Kaibo
    Guo, Yongqi
    Huang, Yuxin
    Yuan, Zehuan
    Cai, Yujia
    Li, Sitong
    Xu, Jiarong
    Lin, Xiaohong
    MEDICINE, 2023, 102 (02) : E32623
  • [40] Exploring the mechanism of action of Phyllanthus emblica in the treatment of epilepsy based on network pharmacology and molecular docking
    Xiao, Longfei
    Chen, Wenjun
    Guo, Wenlong
    Li, Hailin
    Chen, Rong
    Chen, Qinghua
    MEDICINE, 2025, 104 (07) : e41414