Triple-network-based conductive polymer hydrogel for soft and elastic bioelectronic interfaces

被引:20
作者
Chen, Yan [1 ]
Chen, Liangpeng [2 ]
Geng, Bowen [1 ]
Chen, Fan [1 ]
Yuan, Yuan [1 ]
Li, Deling [2 ,3 ]
Wang, Yi-Xuan [1 ,4 ,5 ,6 ]
Jia, Wang [2 ,3 ,7 ]
Hu, Wenping [1 ,4 ,5 ,6 ]
机构
[1] Tianjin Univ, Collaborat Innovat Ctr Chem Sci & Engn, Tianjin Key Lab Mol Optoelect Sci, Dept Chem,Sch Sci, Tianjin, Peoples R China
[2] Capital Med Univ, Beijing Tiantan Hosp, Dept Neurosurg, Beijing, Peoples R China
[3] Capital Med Univ, Beijing Tiantan Hosp, China Natl Clin Res Ctr Neurol Dis NCRC ND, Beijing, Peoples R China
[4] Tianjin Municipal Peoples Goverment, Haihe Lab Sustainable Chem Transformat, Tianjin, Peoples R China
[5] Tianjin Univ, Sch Sci, Key Lab Mol Optoelect Sci, Tianjin 300072, Peoples R China
[6] Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300072, Peoples R China
[7] Capital Med Univ, Beijing Tiantan Hosp, Dept Neurosurg, Beijing 100070, Peoples R China
来源
SMARTMAT | 2024年 / 5卷 / 03期
基金
中国国家自然科学基金;
关键词
conductive polymer hydrogel; neurostimulation; PEDOT; PSS; triple interpenetrating network; ultrasoft bioelectronics; PEDOTPSS; ADHESION;
D O I
10.1002/smm2.1229
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Conductive polymer hydrogels have greatly improved the compatibility of electronic devices with biological tissues for human-machine interfacing. Hydrogels that possess low Young's modulus, low interfacial impedance, and high tensile properties facilitate high-quality signal transmission across dynamic biointerfaces. Direct incorporation of elastomers with conductive polymers may result in undesirable mechanical and/or electrical performance. Here, a covalent cross-linking network and an entanglement-driven network with conductive poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) have been combined. The triple-network conductive hydrogel shows high stretchability (with fracture strain up to 900%), low impedance (down to 91.2 & omega; cm(2)), and reversible adhesion. Importantly, ultra-low modulus (down to 6.3 kPa) and strain-insensitive electrical/electrochemical performance were achieved, which provides a guarantee for low current stimulation. The material design will contribute to the progression of soft and conformal bioelectronic devices, and pave the way to future implantable electronics.
引用
收藏
页数:13
相关论文
共 64 条
  • [1] Entanglement-Driven Adhesion, Self-Healing, and High Stretchability of Double-Network PEG-Based Hydrogels
    Chen, Kaiwen
    Fen, Yangyingfan
    Zhang, Yang
    Yu, Lei
    Hao, Xingxing
    Shao, Fei
    Dou, Zhenzhen
    An, Chuanfeng
    Zhuang, Zhumei
    Luo, Yonghao
    Wang, Yi
    Wu, Jinrong
    Ji, Ping
    Chen, Tao
    Wang, Huanan
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (40) : 36458 - 36468
  • [2] Cell adhesion on an artificial extracellular matrix using aptamer-functionalized PEG hydrogels
    Chen, Niancao
    Zhang, Zhaoyang
    Soontornworajit, Boonchoy
    Zhou, Jing
    Wang, Yong
    [J]. BIOMATERIALS, 2012, 33 (05) : 1353 - 1362
  • [3] Stretchable and Self-Healing Interlocking All-in-One Supercapacitors Based on Multiple Cross-Linked Hydrogel Electrolytes
    Cheng, Tao
    Li, Lang
    Chen, Ya-Li
    Yang, Sheng
    Yang, Xuan-Li
    Liu, Zhong-Ting
    Qu, Jie
    Meng, Chao-Fu
    Zhang, Yi-Zhou
    Lai, Wen-Yong
    [J]. ADVANCED MATERIALS INTERFACES, 2022, 9 (29)
  • [4] 3D printable conductive polymer hydrogels with ultra-high conductivity and superior stretchability for free-standing elastic all-gel supercapacitors
    Cheng, Tao
    Wang, Feng
    Zhang, Yi-Zhou
    Li, Lang
    Gao, Si-Ya
    Yang, Xuan-Li
    Wang, Shi
    Chen, Peng-Fei
    Lai, Wen-Yong
    [J]. CHEMICAL ENGINEERING JOURNAL, 2022, 450
  • [5] Micro-interfacial polymerization of porous PEDOT for printable electronic devices
    Cheng, Wanke
    Liu, Yongzhuang
    Tong, Zhihan
    Zhu, Ying
    Cao, Kaiyue
    Chen, Wenshuai
    Zhao, Dawei
    Yu, Haipeng
    [J]. ECOMAT, 2023, 5 (02)
  • [6] Application of a Novel Measurement Setup for Characterization of Graphene Microelectrodes and a Comparative Study of Variables Influencing Charge Injection Limits of Implantable Microelectrodes
    Cisnal, Ana
    Ihmig, Frank R.
    Fraile, Juan-Carlos
    Perez-Turiel, Javier
    Munoz-Martinez, Victor
    [J]. SENSORS, 2019, 19 (12)
  • [7] A Measurement Setup and Automated Calculation Method to Determine the Charge Injection Capacity of Implantable Microelectrodes
    Cisnal, Ana
    Fraile, Juan-Carlos
    Perez-Turiel, Javier
    Munoz-Martinez, Victor
    Mueller, Carsten
    Ihmig, Frank R.
    [J]. SENSORS, 2018, 18 (12)
  • [8] Mechanically strong conducting hydrogels with special double-network structure
    Dai, Tingyang
    Qing, Xutang
    Zhou, Hui
    Shen, Chen
    Wang, Jing
    Lu, Yun
    [J]. SYNTHETIC METALS, 2010, 160 (7-8) : 791 - 796
  • [9] Stretchable, self-healable, and breathable biomimetic iontronics with superior humidity-sensing performance for wireless respiration monitoring
    Ding, Qiongling
    Wang, Hao
    Zhou, Zijing
    Wu, Zixuan
    Tao, Kai
    Gui, Xuchun
    Liu, Chuan
    Shi, Wenxiong
    Wu, Jin
    [J]. SMARTMAT, 2023, 4 (02):
  • [10] Stretchable ionics: How to measure the electrical resistance/impedance
    Ding, Yichun
    Zheng, Zijian
    [J]. MATTER, 2022, 5 (09) : 2570 - 2573