Deep learning for few-shot white blood cell image classification and feature learning

被引:2
|
作者
Deng, Yixiang [1 ]
Li, He [2 ]
机构
[1] MIT & Harvard, Ragon Inst Mass Gen, Cambridge, MA 02139 USA
[2] Univ Georgia, Sch Chem Mat & Biomed Engn, Lawrenceville, Georgia
关键词
Image Classification; white blood cell; few-shot learning; data imbalance; deep learning; COUNT; MECHANISMS; DISEASE; SEGMENTATION; PERFORMANCE; NEUTROPHILS; LEUKOCYTES; MORTALITY; MONOCYTES; PLATELETS;
D O I
10.1080/21681163.2023.2219341
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Differential counting of white blood cells (WBCs) in bone marrow using artificial intelligence (AI)-based models, such as convolutional neural network (CNN) and its various variants, can help physicians to efficiently diagnose many critical diseases such as leukaemia, AIDS and cancers. In this work, we implement a deep transfer learning to several CNN models to examine their effectiveness on automatically classifying WBCs into lymphocytes and non-lymphocytes groups. Our results show that transfer learning can enhance the training of the model and improve the model performance. We also discover that using image masking to remove irrelevant image pixels can further increase the accuracy of the model predictions. Moreover, we assess the impact of three data augmentation techniques to address the imbalance in the data set, which commonly occurs in many biological applications. Our results show that all the three examined data augmentation methods improve the classification results on both training and testing data sets. Altogether, we demonstrate that deep neural networks, when combined with transfer learning and imaging processing techniques, can serve as a powerful tool to conduct automatic differential counting of WBCs, and thus facilitate the diagnosis of the WBC-related disorders, monitor the disease progression and improve the effectiveness of therapeutics.
引用
收藏
页码:2081 / 2091
页数:11
相关论文
共 50 条
  • [31] Few-Shot Learning for Image Denoising
    Jiang, Bo
    Lu, Yao
    Zhang, Bob
    Lu, Guangming
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (09) : 4741 - 4753
  • [32] Feature Rectification and Distribution Correction for Few-Shot Image Classification
    Cheng, Qiping
    Liu, Ying
    Zhang, Weidong
    2024 6TH INTERNATIONAL CONFERENCE ON NATURAL LANGUAGE PROCESSING, ICNLP 2024, 2024, : 451 - 457
  • [33] SELF-SUPERVISED LEARNING FOR FEW-SHOT IMAGE CLASSIFICATION
    Chen, Da
    Chen, Yuefeng
    Li, Yuhong
    Mao, Feng
    He, Yuan
    Xue, Hui
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1745 - 1749
  • [34] Feature Transductive Distribution Optimization for Few-Shot Image Classification
    Liu, Qing
    Tang, Xianlun
    Wang, Ying
    Li, Xingchen
    Jiang, Xinyan
    Li, Weisheng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2025, 35 (03) : 2230 - 2243
  • [35] Few-shot classification with task-adaptive semantic feature learning
    Pan, Mei-Hong
    Xin, Hong-Yi
    Xia, Chun-Qiu
    Shen, Hong -Bin
    PATTERN RECOGNITION, 2023, 141
  • [36] Feature Contrastive Transfer Learning for Few-Shot Long-Tail Sonar Image Classification
    Bai, Zhongyu
    Xu, Hongli
    Ding, Qichuan
    Zhang, Xiangyue
    IEEE COMMUNICATIONS LETTERS, 2025, 29 (03) : 562 - 566
  • [37] LEARNING SEMANTICS-GUIDED VISUAL ATTENTION FOR FEW-SHOT IMAGE CLASSIFICATION
    Chu, Wen-Hsuan
    Wang, Yu-Chiang Frank
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 2979 - 2983
  • [38] Few-Shot Image Classification Method Based on Visual Language Prompt Learning
    Li B.
    Wang X.
    Teng S.
    Lyu X.
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2024, 47 (02): : 11 - 17
  • [39] From Sample Poverty to Rich Feature Learning: A New Metric Learning Method for Few-Shot Classification
    Zhang, Lei
    Lin, Yiting
    Yang, Xinyu
    Chen, Tingting
    Cheng, Xiyuan
    Cheng, Wenbin
    IEEE ACCESS, 2024, 12 : 124990 - 125002
  • [40] Feature Transformation Network for Few-Shot Learning
    Wang, Xiaoyan
    Wang, Hongmei
    Zhou, Daming
    IEEE ACCESS, 2021, 9 : 41913 - 41924