Arithmetic Properties of Certain t-Regular Partitions

被引:1
作者
Barman, Rupam [1 ]
Singh, Ajit [1 ]
Singh, Gurinder [1 ]
机构
[1] Indian Inst Technol Guwahati, Dept Math, Gauhati 781039, Assam, India
关键词
t-Regular partitions; Eta-quotients; Modular forms; Congruences; Density; PARITY; PROOFS;
D O I
10.1007/s00026-023-00649-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a positive integer t > 2, let bt(n) denote the number of t-regular partitions of a nonnegative integer n. Motivated by some re-cent conjectures of Keith and Zanello, we establish infinite families of congruences modulo 2 for b9(n) and b19(n). We prove some specific cases of two conjectures of Keith and Zanello on self-similarities of b9(n) and b19(n) modulo 2. For t E {6,10, 14, 15, 18, 20, 22, 26, 27, 28}, Keith and Zanello conjectured that there are no integers A > 0 and B > 0 for which bt(An + B) 0 (mod 2) for all n > 0. We prove that, for any t > 2 and prime $, there are infinitely many arithmetic progressions An + B for which S8n=0 bt(An +B)qn ?0 (mod $). Next, we obtain quantitative estimates for the distributions of b6(n), b10(n) and b14(n) modulo 2. We further study the odd densities of certain infinite families of eta-quotients related to the 7-regular and 13-regular partition functions.
引用
收藏
页码:439 / 457
页数:19
相关论文
共 24 条
  • [1] Distribution of parity of the partition function in arithmetic progressions
    Ahlgren, S
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 1999, 10 (02): : 173 - 181
  • [2] Parity results for 7-regular and 23-regular partitions
    Baruah, Nayandeep Deka
    Das, Kuwali
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2015, 11 (07) : 2221 - 2238
  • [3] Berndt B.C., 2006, Stud. Math. Lib., V34
  • [4] Calkin N., 2008, INTEGERS, VA60
  • [5] Lacunary eta-quotients modulo powers of primes
    Cotron, Tessa
    Michaelsen, Anya
    Stamm, Emily
    Zhu, Weitao
    [J]. RAMANUJAN JOURNAL, 2020, 53 (02) : 269 - 284
  • [6] Congruences for 9-regular partitions modulo 3
    Cui, Su-Ping
    Gu, Nancy S. S.
    [J]. RAMANUJAN JOURNAL, 2015, 38 (03) : 503 - 512
  • [7] Arithmetic properties of l-regular partitions
    Cui, Su-Ping
    Gu, Nancy S. S.
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2013, 51 (04) : 507 - 523
  • [8] Incongruences for modular forms and applications to partition functions
    Garthwaite, Sharon Anne
    Jameson, Marie
    [J]. ADVANCES IN MATHEMATICS, 2021, 376
  • [9] Gordan B., 1997, Ramanujan J, V1, P25, DOI [10.1023/A:1009711020492, DOI 10.1023/A:1009711020492]
  • [10] Hirschhorn M. D., 2017, DEV MATH, V9