Intelligent Edge Sensing and Control Co-Design for Industrial Cyber-Physical System

被引:7
作者
Ji, Zhiduo [1 ,2 ]
Chen, Cailian [1 ,2 ]
Zhu, Shanying [1 ,2 ]
Ma, Yehan [1 ,2 ]
Guan, Xinping [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Automat, Shanghai 200240, Peoples R China
[2] Minist Educ China, Key Lab Syst Control & Informat Proc, Shanghai 200240, Peoples R China
来源
IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS | 2023年 / 9卷
关键词
Sensors; Production; Edge computing; Observability; Controllability; Computational modeling; Mathematical models; Sensing and control co-design; learning network; edge computing; industrial cyber-physical system; CONTROLLABILITY; FRAMEWORK;
D O I
10.1109/TSIPN.2023.3239695
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In the new generation of industrial cyber-physical system (ICPS), data-driven control is one of the emerging intelligent control methods to realize efficient production adjustment. In most existing works, the perfect sensing process is regarded as the fundamental assumption. However the experienced sensing strategies deployed in advance are increasingly difficult to adapt to the expanding network scale and diversified production demands in the Industry 4.0 era. To tackle the challenges, we propose the novel intelligent edge sensing and control co-design (IESCC) framework under ICPS. The cooperation of five constructed graph convolutional neural networks respectively related to system model, sensing model, estimator, actor and critic is adopted to approximate the coupled optimality conditions of sensing and control strategies. The structure of learning networks is designed in advance for online strategy solving tailored for the real-time industrial requirements and edge computing power. In particular, the representation capabilities of learning networks under different scales are quantitatively analyzed from the perspectives of observability and controllability. Besides, the feasible region of learning rates is explicitly depicted to ensure convergence. Finally, the proposed algorithm is applied into the laminar cooling process in the semi-physical simulation. Compared with the state-of-the-art approaches, our method can always guarantee observability and controllability. And up to 27.9% overall performance of sensing and control is improved, and 38%execution time reduction is achieved on average.
引用
收藏
页码:175 / 189
页数:15
相关论文
共 50 条
[31]   Cloud-Edge Model Predictive Control of Cyber-Physical Systems Under Cyber Attacks [J].
Guo, Yaning ;
Sun, Qi ;
Wang, Yintao ;
Pan, Quan .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2025, 72 (04) :1843-1851
[32]   Modeling of Future Cyber-Physical Energy Systems for Distributed Sensing and Control [J].
Ilic, Marija D. ;
Xie, Le ;
Khan, Usman A. ;
Moura, Jose M. F. .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 2010, 40 (04) :825-838
[33]   A service-oriented edge platform for cyber-physical systems [J].
Lalanda, Philippe ;
Hamon, Catherine .
CCF TRANSACTIONS ON PERVASIVE COMPUTING AND INTERACTION, 2020, 2 (03) :206-217
[34]   A service-oriented edge platform for cyber-physical systems [J].
Philippe Lalanda ;
Catherine Hamon .
CCF Transactions on Pervasive Computing and Interaction, 2020, 2 :206-217
[35]   AN INTEGRATED CYBER-PHYSICAL SYSTEM FOR CLOUD MANUFACTURING [J].
Wang, Lihui ;
Gao, Robert ;
Ragai, Ihab .
PROCEEDINGS OF THE ASME 9TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE, 2014, VOL 1, 2014,
[36]   System-Level Design, Modeling, and Verification of GALS Cyber-Physical Systems [J].
Zhang, Weiyi ;
Salcic, Zoran ;
Malik, Avinash .
IEEE OPEN JOURNAL OF THE INDUSTRIAL ELECTRONICS SOCIETY, 2025, 6 :1137-1151
[37]   Optical fog-assisted cyber-physical system for intelligent surveillance in the education system [J].
Singh, Kiran Deep ;
Sood, Sandeep K. .
COMPUTER APPLICATIONS IN ENGINEERING EDUCATION, 2020, 28 (03) :692-704
[38]   Communication and control co-design for networked control systems [J].
Zhang, Lei ;
Hristu-Varsakelis, Dimitrios .
AUTOMATICA, 2006, 42 (06) :953-958
[39]   Edge-AI empowered Cyber-Physical Systems: A comprehensive review on performance analysis [J].
Singh, Raj Kumar Baliyar ;
Reddy, K. Hemant Kumar .
COMPUTER SCIENCE REVIEW, 2025, 58
[40]   Server-Edge dualized closed-loop data analytics system for cyber-physical system application [J].
Kim, Jun ;
Lee, Ju Yeon .
ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2021, 67