Plant disease detection using drones in precision agriculture

被引:66
作者
Chin, Ruben [1 ]
Catal, Cagatay [2 ]
Kassahun, Ayalew [1 ]
机构
[1] Wageningen Univ & Res, Informat Technol Grp, Wageningen, Netherlands
[2] Qatar Univ, Dept Comp Sci & Engn, Doha, Qatar
关键词
Drone; Plant disease detection; Machine learning; AERIAL; SYSTEMS; IMAGERY;
D O I
10.1007/s11119-023-10014-y
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Plant diseases affect the quality and quantity of agricultural products and have an impact on food safety. These effects result in a loss of income in the production sectors which are particularly critical for developing countries. Visual inspection by subject matter experts is time-consuming, expensive and not scalable for large farms. As such, the automation of plant disease detection is a feasible solution to prevent losses in yield. Nowadays, one of the most popular approaches for this automation is to use drones. Though there are several articles published on the use of drones for plant disease detection, a systematic overview of these studies is lacking. To address this problem, a systematic literature review (SLR) on the use of drones for plant disease detection was undertaken and 38 primary studies were selected to answer research questions related to disease types, drone categories, stakeholders, machine learning tasks, data, techniques to support decision-making, agricultural product types and challenges. It was shown that the most common disease is blight; fungus is the most important pathogen and grape and watermelon are the most studied crops. The most used drone type is the quadcopter and the most applied machine learning task is classification. Color-infrared (CIR) images are the most preferred data used and field images are the main focus. The machine learning algorithm applied most is convolutional neural network (CNN). In addition, the challenges to pave the way for further research were provided.
引用
收藏
页码:1663 / 1682
页数:20
相关论文
共 68 条
[1]  
Abdulkhair W.M., 2016, PLANT PATHOGENS PLAN, P49, DOI [10.5772/65325, DOI 10.5772/65325.AVAILABLE]
[2]   Technology Impact on Agricultural Productivity: A Review of Precision Agriculture Using Unmanned Aerial Vehicles [J].
Abdullahi, H. S. ;
Mahieddine, F. ;
Sheriff, R. E. .
WIRELESS AND SATELLITE SYSTEMS (WISATS 2015), 2015, 154 :388-400
[3]   Laboratory and UAV-Based Identification and Classification of Tomato Yellow Leaf Curl, Bacterial Spot, and Target Spot Diseases in Tomato Utilizing Hyperspectral Imaging and Machine Learning [J].
Abdulridha, Jaafar ;
Ampatzidis, Yiannis ;
Qureshi, Jawwad ;
Roberts, Pamela .
REMOTE SENSING, 2020, 12 (17)
[4]   Detecting powdery mildew disease in squash at different stages using UAV-based hyperspectral imaging and artificial intelligence [J].
Abdulridha, Jaafar ;
Ampatzidis, Yiannis ;
Roberts, Pamela ;
Kakarla, Sri Charan .
BIOSYSTEMS ENGINEERING, 2020, 197 :135-148
[5]   Detection of target spot and bacterial spot diseases in tomato using UAV-based and benchtop-based hyperspectral imaging techniques [J].
Abdulridha, Jaafar ;
Ampatzidis, Yiannis ;
Kakarla, Sri Charan ;
Roberts, Pamela .
PRECISION AGRICULTURE, 2020, 21 (05) :955-978
[6]   UAV-Based Remote Sensing Technique to Detect Citrus Canker Disease Utilizing Hyperspectral Imaging and Machine Learning [J].
Abdulridha, Jaafar ;
Batuman, Ozgur ;
Ampatzidis, Yiannis .
REMOTE SENSING, 2019, 11 (11)
[7]  
Ahirwar S., 2019, Int J Curr Microbiol App Sci, V8, P2500, DOI DOI 10.20546/IJCMAS.2019.801.264
[8]   Systematic Mapping Study on Remote Sensing in Agriculture [J].
Alberto Garcia-Berna, Jose ;
Ouhbi, Sofia ;
Benmouna, Brahim ;
Garcia-Mateos, Gines ;
Luis Fernandez-Aleman, Jose ;
Miguel Molina-Martinez, Jose .
APPLIED SCIENCES-BASEL, 2020, 10 (10)
[9]  
Alberto RT, 2020, SPAT INF RES, V28, P383
[10]   On the Potentiality of UAV Multispectral Imagery to Detect Flavescence doree and Grapevine Trunk Diseases [J].
Albetis, Johanna ;
Jacquin, Anne ;
Goulard, Michel ;
Poilve, Herve ;
Rousseau, Jacques ;
Clenet, Harold ;
Dedieu, Gerard ;
Duthoit, Sylvie .
REMOTE SENSING, 2019, 11 (01)