Effects of freeze-thaw cycles on methanogenic hydrocarbon degradation: Experiment and modeling

被引:4
|
作者
Ramezanzadeh, Mehdi [1 ,2 ]
Slowinski, Stephanie [1 ,2 ]
Rezanezhad, Fereidoun [1 ,2 ]
Murr, Kathleen [1 ,2 ]
Lam, Christina [1 ,2 ]
Smeaton, Christina [3 ]
Alibert, Clement [1 ,2 ]
Vandergriendt, Marianne [1 ,2 ]
Van Cappellen, Philippe [1 ,2 ]
机构
[1] Univ Waterloo, Dept Earth & Environm Sci, Ecohydrol Res Grp, Waterloo, ON, Canada
[2] Univ Waterloo, Water Inst, Waterloo, ON, Canada
[3] Mem Univ Newfoundland, Sch Sci & Environm, Grenfell Campus, St John, NF, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Cold region soils; Freeze -thaw cycles; Petroleum hydrocarbons; Natural source zone depletion; Methanogenesis; Toluene biodegradation; Diffusion -reaction model; DISSOLVED ORGANIC-CARBON; NITROUS-OXIDE EMISSIONS; DIFFUSION-COEFFICIENTS; LOW-TEMPERATURE; MASS-TRANSFER; MICROBIAL COMMUNITY; LAKE SEDIMENT; FRESH-WATER; SOIL; TRANSPORT;
D O I
10.1016/j.chemosphere.2023.138405
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Cold regions are warming much faster than the global average, resulting in more frequent and intense freeze -thaw cycles (FTCs) in soils. In hydrocarbon-contaminated soils, FTCs modify the biogeochemical and physical processes controlling petroleum hydrocarbon (PHC) biodegradation and the associated generation of methane (CH4) and carbon dioxide (CO2). Thus, understanding the effects of FTCs on the biodegradation of PHCs is critical for environmental risk assessment and the design of remediation strategies for contaminated soils in cold regions. In this study, we developed a diffusion-reaction model that accounts for the effects of FTCs on toluene biodegradation, including methanogenic biodegradation. The model is verified against data generated in a 215 day-long batch experiment with soil collected from a PHC contaminated site in Ontario, Canada. The fully saturated soil incubations with six different treatments were exposed to successive 4-week FTCs, with temper-atures oscillating between-10 degrees C and +15 degrees C, under anoxic conditions to stimulate methanogenic biodegra-dation. We measured the headspace concentrations and 13C isotope compositions of CH4 and CO2 and analyzed the porewater for pH, acetate, dissolved organic and inorganic carbon, and toluene. The numerical model rep-resents solute diffusion, volatilization, sorption, as well as a reaction network of 13 biogeochemical processes. The model successfully simulates the soil porewater and headspace concentration time series data by repre-senting the temperature dependencies of microbial reaction and gas diffusion rates during FTCs. According to the model results, the observed increases in the headspace concentrations of CH4 and CO2 by 87% and 136%, respectively, following toluene addition are explained by toluene fermentation and subsequent methanogenesis reactions. The experiment and the numerical simulation show that methanogenic degradation is the primary toluene attenuation mechanism under the electron acceptor-limited conditions experienced by the soil samples, representing 74% of the attenuation, with sorption contributing to 11%, and evaporation contributing to 15%. Also, the model-predicted contribution of acetate-based methanogenesis to total produced CH4 agrees with that derived from the 13C isotope data. The freezing-induced soil matrix organic carbon release is considered as an important process causing DOC increase following each freezing period according to the calculations of carbon balance and SUVA index. The simulation results of a no FTC scenario indicate that, in the absence of FTCs, CO2 and CH4 generation would decrease by 29% and 26%, respectively, and that toluene would be biodegraded 23% faster than in the FTC scenario. Because our modeling approach represents the dominant processes controlling PHC biodegradation and the associated CH4 and CO2 fluxes, it can be used to analyze the sensitivity of these processes to FTC frequency and duration driven by temperature fluctuations.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Influence of freeze-thaw cycles on the degradation of sandstone after loading and unloading
    Zhang, Jian
    Deng, Hongwei
    Deng, Junren
    Guo, Hongquan
    BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT, 2020, 79 (04) : 1967 - 1977
  • [22] Strength degradation mechanism and modeling of freeze-thaw foam concrete
    Li, Qiang
    Gong, Boyou
    Zhang, Chong
    Song, Yongjun
    Cao, Jinghui
    ce/papers, 2025, 8 (02) : 47 - 59
  • [23] EFFECTS OF REPEATED FREEZE-THAW CYCLES ON ANTICARDIOLIPIN ANTIBODY IMMUNOREACTIVITY
    BREY, RL
    COTE, SA
    MCGLASSON, DL
    TRIPLETT, DA
    BARNA, LK
    AMERICAN JOURNAL OF CLINICAL PATHOLOGY, 1994, 102 (05) : 586 - 588
  • [24] The coupling effects of freeze-thaw cycles and salinization due to snowfall on the rammed earth used in historical freeze-thaw cycles relics in northwest China
    Cui, Kai
    Wu, Guopeng
    Du, Yumin
    An, Xinyue
    Wang, Zelin
    COLD REGIONS SCIENCE AND TECHNOLOGY, 2019, 160 : 288 - 299
  • [25] Effects of freeze-thaw cycles on the quality of frozen raw noodles
    Liu, Hui
    Guo, Xiao-Na
    Zhu, Ke-Xue
    FOOD CHEMISTRY, 2022, 387
  • [26] Effects of Freeze-Thaw Cycles on Bioaccessibilities of Polycyclic Aromatic Hydrocarbons
    Dong, Hui
    Wu, Ze
    TOXICS, 2024, 12 (06)
  • [27] Effects of multiple freeze-thaw cycles on the quality of frozen dough
    Zhang, Yanyan
    Li, Yinli
    Liu, Ying
    Zhang, Hua
    CEREAL CHEMISTRY, 2018, 95 (04) : 499 - 507
  • [28] Effects of freeze-thaw cycles on the moisture sensitivity of a compacted clay
    Zou, Wei-lie
    Ding, Lu-qiang
    Han, Zhong
    Wang, Xie-qun
    ENGINEERING GEOLOGY, 2020, 278
  • [29] Effects of freeze-thaw cycles on sandstone in sunny and shady slopes
    Xiao, Dian
    Zhao, Xiaoyan
    Fidelibus, Corrado
    Tomas, Roberto
    Lu, Qiu
    Liu, Hongwei
    JOURNAL OF ROCK MECHANICS AND GEOTECHNICAL ENGINEERING, 2024, 16 (07) : 2503 - 2515
  • [30] Modeling of chloride penetration in concrete structures under freeze-thaw cycles
    Hamidane, H'mida
    Ababneh, Ayman
    Messabhia, Ali
    Xi, Yunping
    INTERNATIONAL JOURNAL OF BUILDING PATHOLOGY AND ADAPTATION, 2019, 38 (01) : 127 - 147