Facile and scalable construction of nitrogen-doped lignin-based carbon nanospheres for high-performance supercapacitors

被引:27
|
作者
Yang, Jiamei [1 ]
Xiong, Fuquan [1 ,3 ]
Wang, Hang [1 ]
Ma, Bole [1 ]
Guo, Feng [1 ]
Qing, Yan [1 ]
Chu, Fuxiang [2 ]
Wu, Yiqiang [1 ,3 ]
机构
[1] Cent South Univ Forestry & Technol, Coll Mat Sci & Engn, Changsha 410004, Peoples R China
[2] Chinese Acad Forestry, Res Inst Wood Ind, Beijing 100091, Peoples R China
[3] 498 Shaoshan South Rd, Changsha, Peoples R China
基金
中国国家自然科学基金;
关键词
Lignin; Nitrogen doping; Carbon nanospheres; Supercapacitor; HIERARCHICAL POROUS CARBON; EFFICIENT REMOVAL; MESOPOROUS CARBON; SPHERES; ELECTRODES; OXYGEN; NANOPARTICLES; MICROSPHERES; CAPACITANCE; FABRICATION;
D O I
10.1016/j.fuel.2023.128007
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Lignin-based carbon nanospheres have a high specific surface area, large porosity, and excellent stability, while being used in potential applications such as catalyst carriers, adsorbents, and energy storage materials. However, the low hydrophilicity and poor chemical activity of pure carbon nanospheres make it challenging for those materials to meet the needs of various functions. The introduction of nitrogen atoms can increase the active site of the materials, thereby improving the performance. In this study, lignin nanospheres (LNS) with a solid content of 5.8 mg mL-1 in the suspension and an actual yield of 85% were prepared using a gamma-valerolactone/water binary system. Based on that, nitrogen-doped lignin-based carbon nanospheres (NCS) were successfully constructed. The doping ratio of urea and carbonization temperature significantly affected the physicochemical properties of the carbon materials. By varying the urea doping ratio and temperature, the nitrogen atom content of the NCS varied from 5.0 to 10.9 at.%. After assembling them into electrochemical capacitors, NCS-15-700 exhibited excellent capacitance of 232 F g-1 at 0.5 A g-1 and 10,000 cycles long cycling stability (retention of 97.2%). The specific capacitance was enhanced by approximately 40% compared to undoped lignin-based carbon nanospheres (LCS). It is evident that nitrogen-doped lignin-based carbon nanospheres have promising applicability in supercapacitors.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Facile synthesis of nitrogen-doped porous carbon as robust electrode for supercapacitors
    Mao, Zuxing
    Zhao, Shaobin
    Wang, Jing
    Zeng, Yinxiang
    Lu, Xihong
    Tong, Yexiang
    MATERIALS RESEARCH BULLETIN, 2018, 101 : 140 - 145
  • [22] High-performance electrode materials of heteroatom-doped lignin-based carbon materials for supercapacitor applications
    Zhang, Cheng
    Chen, Nuo
    Zhao, Miao
    Zhong, Wei
    Wu, Wen-Juan
    Jin, Yong -Can
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 273
  • [23] Hollow carbon spheres anchored with nitrogen-doped carbon dots for high-performance supercapacitors
    Dai, Jiaxu
    Li, Guochang
    Hu, Yaoping
    Han, Lei
    JOURNAL OF ENERGY STORAGE, 2024, 83
  • [24] Graphitic carbon nitride film deposited with nitrogen-doped carbon nanoparticles as electrode for high-performance supercapacitors
    Zhu, Jun
    Ma, Qiang
    Kong, Lirong
    Dai, Jianguo
    Xu, Keqiang
    Chen, Quanrun
    Zhao, Zhiguo
    CARBON LETTERS, 2024, 34 (09) : 2279 - 2290
  • [25] Activated nitrogen-doped porous carbon ensemble on montmorillonite for high-performance supercapacitors
    Zhang, Wenwen
    Ren, Zhenbo
    Ying, Zongrong
    Liu, Xindong
    Wan, Hui
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 743 : 44 - 51
  • [26] Nitrogen-doped microporous carbon coated on carbon nanotubes for high performance supercapacitors
    Liu, Ruonan
    Sun, Shuxian
    Zhong, Renqi
    Zhang, Hongxue
    Wu, Xiaoliang
    MICROPOROUS AND MESOPOROUS MATERIALS, 2020, 305
  • [27] Easy preparation of nitrogen-doped porous carbon nanospheres and their application in supercapacitors
    Xu, Bin
    Yue, Shufang
    Qiao, Ning
    Chu, Mo
    Wei, Gang
    MATERIALS LETTERS, 2014, 131 : 49 - 52
  • [28] Facile synthesis of nitrogen-doped graphene on Ni foam for high-performance supercapacitors
    Haifu Huang
    Chenglong Lei
    Guangsheng Luo
    Zhenzhi Cheng
    Guangxu Li
    Shaolong Tang
    Youwei Du
    Journal of Materials Science, 2016, 51 : 6348 - 6356
  • [29] Facile synthesis of nitrogen-doped graphene on Ni foam for high-performance supercapacitors
    Huang, Haifu
    Lei, Chenglong
    Luo, Guangsheng
    Cheng, Zhenzhi
    Li, Guangxu
    Tang, Shaolong
    Du, Youwei
    JOURNAL OF MATERIALS SCIENCE, 2016, 51 (13) : 6348 - 6356
  • [30] The key pre-pyrolysis in lignin-based activated carbon preparation for high performance supercapacitors
    Yu, Baojun
    Chang, Zhenzhen
    Wang, Chengyang
    MATERIALS CHEMISTRY AND PHYSICS, 2016, 181 : 187 - 193