Copper Encapsulated Ultra-Thin NbN Films and Damascene Structures on 300 mm Si Wafers

被引:3
作者
Kar, Soumen [1 ]
Walker, Harrison [2 ]
Shah, Archit [2 ]
Frost, Hunter [3 ]
Olson, Stephen [1 ]
Mucci, John [1 ]
Nalaskowski, Jakub [1 ]
Martinick, Brian [1 ]
Schujman, Sandra [1 ]
Murray, Thomas
Johnson, Corbet S. [1 ]
Wells, Ilyssa [1 ]
Bourque, Ronald [3 ,4 ]
Pierce, Stanley [4 ]
Bhatia, Ekta [1 ]
Hamilton, Michael C. [2 ]
Rao, Satyavolu S. Papa [1 ,3 ]
机构
[1] New York Ctr Res Econ Advancement Technol Engn & S, Albany, NY 12203 USA
[2] Auburn Univ, Alabama Micro Nano Sci & Technol Ctr, Dept Elect & Comp Engn, Auburn, AL 36849 USA
[3] SUNY Polytech Inst, Coll Nanoscale Sci & Engn, Albany, NY 12203 USA
[4] TEL Technol Ctr Amer TTCA LLC, Albany, NY 12203 USA
关键词
Niobium compounds; Films; Silicon; Semiconductor device measurement; Cryogenics; Nanowires; Thickness measurement; Critical current; damascene; nanowires; NbN film; superconducting wires; ultra-thin; SINGLE; DETECTORS;
D O I
10.1109/TASC.2023.3249127
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this report, the development of reactively sputtered ultra-thin niobium nitride (NbN) films and their fabrication into patterned structures using 193 nm optical lithography on 300 mm scale is presented. The target composition of NbN film with Cu encapsulation showed a critical temperature (T-c) of similar to 9.5 K (at a thickness of similar to 50 nm), with < 7% across-wafer variation in room temperature sheet resistance. Using this film composition, damascene structures of 3-20 nm NbN film thickness and 100-3000 nm width, encapsulated by copper, were fabricated on 300 mm Si wafer. These were measured to determine the dependence of the critical current (I-c) as a function of film thickness. The variation of T-c of copper encapsulated NbN as a function of Nb to N ratio, and position on the wafer is reported, along with the variation of T-c and I-c as a function of linewidth. These results underscore the potential of ultra-thin NbN films deposited over a large area, for a broad range of applications in quantum computing, photon detection and superconducting circuits operating at GHz frequencies.
引用
收藏
页数:5
相关论文
共 17 条
[1]   Low noise superconducting single photon detectors on silicon [J].
Dorenbos, S. N. ;
Reiger, E. M. ;
Perinetti, U. ;
Zwiller, V. ;
Zijlstra, T. ;
Klapwijk, T. M. .
APPLIED PHYSICS LETTERS, 2008, 93 (13)
[2]   Fabrication, of nanostructured superconducting single-photon detectors [J].
Gol'tsman, GN ;
Smirnov, K ;
Kouminov, P ;
Voronov, B ;
Kaurova, N ;
Drakinsky, V ;
Zhang, J ;
Verevkin, A ;
Sobolewski, R .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2003, 13 (02) :192-195
[3]   Picosecond superconducting single-photon optical detector [J].
Gol'tsman, GN ;
Okunev, O ;
Chulkova, G ;
Lipatov, A ;
Semenov, A ;
Smirnov, K ;
Voronov, B ;
Dzardanov, A ;
Williams, C ;
Sobolewski, R .
APPLIED PHYSICS LETTERS, 2001, 79 (06) :705-707
[4]   Superconducting properties of very high quality NbN thin films grown by high temperature chemical vapor deposition [J].
Hazra, D. ;
Tsavdaris, N. ;
Jebari, S. ;
Grimm, A. ;
Blanchet, F. ;
Mercier, F. ;
Blanquet, E. ;
Chapelier, C. ;
Hofheinz, M. .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2016, 29 (10)
[5]   High efficiency NbN nanowire superconducting single photon detectors fabricated on MgO substrates from a low temperature process [J].
Marsili, F. ;
Bitauld, D. ;
Fiore, A. ;
Gaggero, A. ;
Mattioli, F. ;
Leoni, R. ;
Benkahoul, M. ;
Levy, F. .
OPTICS EXPRESS, 2008, 16 (05) :3191-3196
[6]  
Marsili F, 2013, NAT PHOTONICS, V7, P210, DOI [10.1038/NPHOTON.2013.13, 10.1038/nphoton.2013.13]
[7]   LOWER CRITICAL-FIELD MEASUREMENTS IN NBN BULK AND THIN-FILMS [J].
MATHUR, MP ;
DEIS, DW ;
GAVALER, JR .
JOURNAL OF APPLIED PHYSICS, 1972, 43 (07) :3158-&
[8]   Superconducting nanowire single-photon detectors: physics and applications [J].
Natarajan, Chandra M. ;
Tanner, Michael G. ;
Hadfield, Robert H. .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2012, 25 (06)
[9]   Room temperature deposition of superconducting niobium nitride films by ion beam assisted sputtering [J].
Polakovic, Tomas ;
Lendinez, Sergi ;
Pearson, John E. ;
Hoffmann, Axel ;
Yefremenko, Volodymyr ;
Chang, Clarence L. ;
Armstrong, Whitney ;
Hafidi, Kawtar ;
Karapetrov, Goran ;
Novosad, Valentine .
APL MATERIALS, 2018, 6 (07)
[10]  
Rhazi R., 2022, PROC INTEGR OPT DEVI, VPC12004, DOI [10.1117/12.2610231, DOI 10.1117/12.2610231]