Generation mechanisms of strange nonchaotic attractors and multistable dynamics in a class of nonlinear economic systems

被引:5
作者
Li, Gaolei [1 ,2 ]
Duan, Jicheng [3 ]
Li, Denghui [4 ]
Wang, Na [1 ]
机构
[1] Yanshan Univ, Sch Civil Engn & Mech, Qinhuangdao 066004, Peoples R China
[2] Yanshan Univ, Hebei Key Lab Mech Reliabil Heavy Equipments & Lar, Qinhuangdao 066004, Peoples R China
[3] Lanzhou Jiaotong Univ, Sch Math & Phys, Lanzhou 730070, Peoples R China
[4] Hexi Univ, Sch Math & Stat, Zhangye 734000, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear economic system; Strange nonchaotic attractor; Phase sensitivity; Multistability; UNEMPLOYMENT; BIFURCATIONS; INSTABILITY; DIMENSIONS; COLLISION; ROUTE; BIRTH; MODEL;
D O I
10.1007/s11071-023-08382-1
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, we study strange nonchaotic attractors (SNAs) and multistable dynamics in a class of nonlinear economic systems. For quasiperiodically forced case, the generation and evolution mechanisms of SNAs are discussed. The fractal, Heagy-Hammel, torus doubling, and intermittency routes to SNAs are identified. The Lyapunov exponent, phase-sensitive function and power spectrum are used to characterize the dynamical and geometrical properties of SNAs. Moreover, when multistable phenomenon occur in the system, the boundaries of the basin of attraction may become intertwined, which leads to the economic unpredictability in the long run.
引用
收藏
页码:10617 / 10627
页数:11
相关论文
共 40 条
[1]   Strange nonchaotic attractors for computation [J].
Aravindh, M. Sathish ;
Venkatesan, A. ;
Lakshmanan, M. .
PHYSICAL REVIEW E, 2018, 97 (05)
[2]   RATIONAL CHOICE AND ERRATIC BEHAVIOR [J].
BENHABIB, J ;
DAY, RH .
REVIEW OF ECONOMIC STUDIES, 1981, 48 (03) :459-471
[3]   Application of the novel nonlinear grey Bernoulli model for forecasting unemployment rate [J].
Chen, Chun-I .
CHAOS SOLITONS & FRACTALS, 2008, 37 (01) :278-287
[4]   THE COBWEB MODEL - ITS INSTABILITY AND THE ONSET OF CHAOS [J].
CHIARELLA, C .
ECONOMIC MODELLING, 1988, 5 (04) :377-384
[5]  
Datta S, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.046203
[6]   DIMENSIONS OF STRANGE NONCHAOTIC ATTRACTORS [J].
DING, MZ ;
GREBOGI, C ;
OTT, E .
PHYSICS LETTERS A, 1989, 137 (4-5) :167-172
[7]   EVOLUTION OF ATTRACTORS IN QUASIPERIODICALLY FORCED SYSTEMS - FROM QUASIPERIODIC TO STRANGE NONCHAOTIC TO CHAOTIC [J].
DING, MZ ;
GREBOGI, C ;
OTT, E .
PHYSICAL REVIEW A, 1989, 39 (05) :2593-2598
[8]   Birth of strange nonchaotic attractors in a piecewise linear oscillator [J].
Duan, Jicheng ;
Zhou, Wei ;
Li, Denghui ;
Grebogi, Celso .
CHAOS, 2022, 32 (10)
[9]   Phase-locking in quasiperiodically forced systems [J].
Feudel, U ;
Grebogi, C ;
Ott, E .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1997, 290 (1-2) :11-25
[10]  
Feudel U., 2006, STRANGE NONCHAOTIC A, P9