Comparing and tuning machine learning algorithms to predict type 2 diabetes mellitus

被引:7
|
作者
Aguilera-Venegas, Gabriel [1 ]
Lopez-Molina, Amador [2 ]
Rojo-Martinez, Gemma [3 ]
Galan-Garcia, Jose Luis [1 ]
机构
[1] Univ Malaga, Dept Matemat Aplicada, Malaga, Spain
[2] Univ Malaga, Escuela Ingn Ind, Malaga, Spain
[3] Hosp Reg Univ Malaga, CIBERDEM, IBIMA Plataforma BIONAND, UGC Endocrinol & Nutr, Malaga, Spain
关键词
Type 2 diabetes mellitus; Machine learning; Decision Trees; Random Forest; kNN; Neural Networks;
D O I
10.1016/j.cam.2023.115115
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main goals of this work are to study and compare machine learning algorithms to predict the development of type 2 diabetes mellitus.Four classification algorithms have been considered, studying and comparing the accuracy of each one to predict the incidence of type 2 diabetes mellitus seven and a half years in advance. Specifically, the techniques studied are: Decision Tree, Random Forest, kNN (k-Nearest Neighbours) and Neural Networks. The study not only involves the comparison among these techniques, but also, the tuning of the hyperparameters of each algorithm.The algorithms have been implemented using the language R. The data base used has been obtained from the nation-wide cohort di@bet.es study.This work includes the accuracy of each algorithm and therefore the best technique for this problem. The best hyperparameters for each algorithm will be also provided.(c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Application of machine learning algorithms to predict osteoporosis in postmenopausal women with type 2 diabetes mellitus
    X. Wu
    F. Zhai
    A. Chang
    J. Wei
    Y. Guo
    J. Zhang
    Journal of Endocrinological Investigation, 2023, 46 : 2535 - 2546
  • [2] Application of machine learning algorithms to predict osteoporosis in postmenopausal women with type 2 diabetes mellitus
    Wu, X.
    Zhai, F.
    Chang, A.
    Wei, J.
    Guo, Y.
    Zhang, J.
    JOURNAL OF ENDOCRINOLOGICAL INVESTIGATION, 2023, 46 (12) : 2535 - 2546
  • [3] Using Machine Learning to Predict CKD upon Type 2 Diabetes Mellitus Diagnosis
    Allen, Angier O.
    Iqbal, Zohora
    Green-Saxena, Abigail
    Das, Ritankar
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2021, 32 (10): : 268 - 268
  • [4] A Machine-Learning Approach on Metabolomic Data to Predict Type 2 Diabetes Mellitus Incidence
    Leiherer, Andreas
    Muendlein, Axel
    Saely, Christoph H.
    Plattner, Thomas
    Larcher, Barbara
    Mader, Arthur
    Vonbank, Alexander
    Laaksonen, Reijo
    Fraunberger, Peter
    Drexel, Heinz
    DIABETES, 2024, 73
  • [5] Exploring the effectiveness of machine learning algorithms for early detection of Type-2 Diabetes Mellitus
    S G.
    Venkata Siva Reddy R.
    Ahmed M.R.
    Measurement. Sens., 2024,
  • [6] Use of machine learning to predict drivers of incident heart failure in patients with type 2 diabetes mellitus
    Kaur, Narinder
    Pellicori, Pierpalo
    Deligianni, Fani
    Clelland, John G. F.
    HEART, 2023, 109 : A162 - A163
  • [7] Use of machine learning to predict mortality in patients with type 2 diabetes mellitus, according to socioeconomic status
    Kaur, N.
    Deligianni, F.
    Pellicori, P.
    Cleland, J. G. F.
    EUROPEAN HEART JOURNAL, 2023, 44
  • [8] PREDICTION OF TYPE 2 DIABETES MELLITUS USING FEATURE SELECTION-BASED MACHINE LEARNING ALGORITHMS
    Yilmaz, Atinc
    HEALTH PROBLEMS OF CIVILIZATION, 2022, 16 (02) : 128 - 139
  • [9] Predictive ability of current machine learning algorithms for type 2 diabetes mellitus: A meta-analysis
    Kodama, Satoru
    Fujihara, Kazuya
    Horikawa, Chika
    Kitazawa, Masaru
    Iwanaga, Midori
    Kato, Kiminori
    Watanabe, Kenichi
    Nakagawa, Yoshimi
    Matsuzaka, Takashi
    Shimano, Hitoshi
    Sone, Hirohito
    JOURNAL OF DIABETES INVESTIGATION, 2022, 13 (05) : 900 - 908
  • [10] Prediction of diabetic kidney disease with machine learning algorithms, upon the initial diagnosis of type 2 diabetes mellitus
    Allen, Angier
    Iqbal, Zohora
    Green-Saxena, Abigail
    Hurtado, Myrna
    Hoffman, Jana
    Mao, Qingqing
    Das, Ritankar
    BMJ OPEN DIABETES RESEARCH & CARE, 2022, 10 (01)