Asymptotic behavior and internal stabilization for the micropolar fluid equations

被引:0
|
作者
Braze e Silva, P. [1 ]
Loayza, M. [1 ]
Rojas-Medar, M. A. [2 ]
机构
[1] Univ Fed Pernambuco, Dept Matemat, Recife, Brazil
[2] Univ Tarapaca, Dept Matemat, Casilla 7D, Arica, Chile
关键词
Micropolar fluids; Stabilization; Feedback control; FINITE-ELEMENT APPROXIMATION; NAVIER-STOKES PROBLEM; STABILITY; UNIFORM; TIME;
D O I
10.1016/j.sysconle.2023.105462
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We are interested in the stability of stationary solutions for the incompressible micropolar fluids system. We prove stability results in the spaces L2(ohm), H1(ohm) and H2(ohm). Moreover, we show that this system can be stabilized (in the L2-norm) using feedback controllers acting only on a part of the domain of interest. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Asymptotic behavior of micropolar fluid flows
    Lukaszewicz, G
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2003, 41 (3-5) : 259 - 269
  • [2] Asymptotic Behavior of Micropolar Fluid Flow Through a Curved Pipe
    Igor Pažanin
    Acta Applicandae Mathematicae, 2011, 116
  • [4] Higher Order Asymptotic Behavior in Micropolar Equations With Nonlinear Damping Effects
    Vega, Franco D.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025,
  • [5] ASYMPTOTIC BEHAVIOR OF THE ONE-DIMENSIONAL COMPRESSIBLE MICROPOLAR FLUID MODEL
    Cui, Haibo
    Gao, Junpei
    Yao, Lei
    ELECTRONIC RESEARCH ARCHIVE, 2021, 29 (02): : 2063 - 2075
  • [6] Asymptotic behaviour of a system of micropolar equations
    Marin-Rubio, Pedro
    Poblete-Cantellano, Mariano
    Rojas-Medar, Marko
    Torres-Cerda, Francisco
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2016, (15) : 1 - 18
  • [7] ASYMPTOTIC STABILITY FOR MICROPOLAR FLUIDS EQUATIONS
    Boldrini, J. O. S. E. LUIz
    Notte-cuello, Eduardo alfonso
    Ortega-torres, Elva
    Rojas-medar, Marko antonio
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2025,
  • [8] The equations of viscoelastic micropolar fluid
    Zubov, LM
    Eremeev, VA
    DOKLADY AKADEMII NAUK, 1996, 351 (04) : 472 - 475
  • [9] Stabilization and asymptotic behavior of non local damped wave equations
    Nicaise, Serge
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2019, 99 (06):
  • [10] Long-time behavior of micropolar fluid equations in cylindrical domains
    Nowakowski, Bernard
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (06) : 2166 - 2179