SARS-CoV-2 Spike Protein Post Translational Modification Landscape and Its Impact on Protein Structure and Function via Computational Prediction

被引:8
|
作者
Liang, Buwen [1 ]
Shi, Wenhao
Ni, Can [1 ]
Tan, Bowen [1 ]
Zhu, Yiying [2 ,4 ]
Tang, Shaojun [1 ,3 ]
机构
[1] Hong Kong Univ Sci & Technol Guangzhou, Hong Kong, Peoples R China
[2] Tsinghua Univ, Anal Ctr, Chem Dept, Beijing, Peoples R China
[3] Hong Kong Univ Sci & Technol, Hong Kong, Peoples R China
[4] Tsinghua Univ, Anal Ctr, Chem Dept, Beijing 100084, Peoples R China
关键词
SARS-CoV-2; Post Translational Modification; LC-MS/MS analysis; Mutagenesis; Structure Prediction; POSTTRANSLATIONAL MODIFICATIONS; WEB SERVER; MECHANISM; ACE2; ENTRY;
D O I
10.34133/research.0078
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
To elucidate the role of post-translational modifications (PTM) in SARS-CoV-2 spike protein's structure and virulence, we generated a high-resolution map of 87 PTMs using liquid chromatography with tandem mass spectrometry (LC-MS/MS) data on extracted spike protein from the SARS-CoV-2 virions, and then reconstituted its structure heterogeneity caused by PTMs. Nonetheless, Alphafold2, a high-accuracy artificial intelligence tool to perform protein structure prediction, relies solely on primary amino acid sequence, whereas the impact of PTM, which often modulate critical protein structure and function, are much ignored. To overcome this challenge, we proposed the mutagenesis approach: in-silico, site-directed amino-acid substitution to mimic the influence of PTMs on protein structure due to altered physicochemical properties in modified amino acids, and then reconstituted the spike protein's structure from the substituted sequences by Alphafold2. For the first time, the proposed method revealed predicted protein structures resulting from PTMs, a problem that Alphafold2 has yet to address. As an example, we performed computational analyses of the interaction of post-translationally modified spike protein with its host factors such as ACE2 to illuminate the binding affinity. Mechanistically, this study suggested that the post-translationally modified protein structural analysis via mutagenesis and deep learning exist. To summarize, the reconstructed spike protein structures showed that specific PTMs can be used to modulate host factor binding, guide antibody design, and pave the way for new therapeutic targets.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Effect of SARS-CoV-2 B.1.1.7 mutations on spike protein structure and function
    Tzu-Jing Yang
    Pei-Yu Yu
    Yuan-Chih Chang
    Kang-Hao Liang
    Hsian-Cheng Tso
    Meng-Ru Ho
    Wan-Yu Chen
    Hsiu-Ting Lin
    Han-Chung Wu
    Shang-Te Danny Hsu
    Nature Structural & Molecular Biology, 2021, 28 : 731 - 739
  • [22] Polymer modification of SARS-CoV-2 spike protein impacts its ability to bind key receptor
    Rahman, Monica Sharfin
    Watuthanthrige, Nethmi De Alwis
    Chandrarathne, Bhagya M.
    Page, Richard C.
    Konkolewicz, Dominik
    EUROPEAN POLYMER JOURNAL, 2023, 184
  • [23] Targeting SARS-CoV-2 Spike Protein/ACE2 Protein-Protein Interactions: a Computational Study
    Pirolli, Davide
    Righino, Benedetta
    De Rosa, Maria Cristina
    MOLECULAR INFORMATICS, 2021, 40 (06)
  • [24] Cellular signalling by SARS-CoV-2 spike protein
    Gracie, Nicholas P.
    Lai, Lachlan Y. S.
    Newsome, Timothy P.
    MICROBIOLOGY AUSTRALIA, 2024, 45 (01) : 13 - 17
  • [25] The Elusive Coreceptors for the SARS-CoV-2 Spike Protein
    Berkowitz, Reed L. L.
    Ostrov, David A. A.
    VIRUSES-BASEL, 2023, 15 (01):
  • [26] SARS-CoV-2 Spike Protein Interaction Space
    Lungu, Claudiu N.
    Putz, Mihai V.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (15)
  • [27] Proteolytic activation of SARS-CoV-2 spike protein
    Takeda, Makoto
    MICROBIOLOGY AND IMMUNOLOGY, 2022, 66 (01) : 15 - 23
  • [28] Is the Stalk of the SARS-CoV-2 Spike Protein Druggable?
    Pipito, Ludovico
    Reynolds, Christopher A.
    Deganutti, Giuseppe
    VIRUSES-BASEL, 2022, 14 (12):
  • [29] Allosteric regulation in SARS-CoV-2 spike protein
    Wei, Yong
    Chen, Amy X.
    Lin, Yuewei
    Wei, Tao
    Qiao, Baofu
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (08) : 6582 - 6589
  • [30] Mutations and Evolution of the SARS-CoV-2 Spike Protein
    Magazine, Nicholas
    Zhang, Tianyi
    Wu, Yingying
    McGee, Michael C.
    Veggiani, Gianluca
    Huang, Weishan
    VIRUSES-BASEL, 2022, 14 (03):