An Inequality for the Convolutions on Unimodular Locally Compact Groups and the Optimal Constant of Young's Inequality

被引:1
作者
Satomi, Takashi [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, 3-8-1 Komaba,Meguro Ku, Tokyo 1538914, Japan
关键词
Convolution; Convexity; Locally compact group; Rearrangement; L-p-space; Young's inequality; Reverse Young's inequality; Hausdorff-Young inequality; P-FOURIER TRANSFORM; NORM; SHARPNESS; OPERATORS; CONVERSE; ALGEBRA; SPACES;
D O I
10.1007/s00041-023-09991-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let mu be the Haar measure of a unimodular locally compact group G and m(G) as the infimum of the volumes of all open subgroups of G. The main result of this paper is that integral(G) f circle (phi(1) * phi(2)) (g) dg <= integral(R) f circle (phi(1)* * phi(2)*)(x) dx holds for any measurable functions phi(1), phi(2): G -> R->= 0 with mu(supp phi(1)) + mu(supp phi(2)) <= m(G) and any convex function f : R->= 0 -> R with f (0) = 0. Here phi* is the rearrangement of phi. Let Y-O(P, G) and Y-R(P, G) denote the optimal constants of Young's and the reverse Young's inequality, respectively, under the assumption mu(supp phi(1)) + mu(supp phi(2)) <= m(G). Then we have Y-O(P, G) <= Y-O(P, R) and Y-R(P, G) >= Y-R(P, R) as a corollary. Thus, we obtain that m(G) = infinity if and only if H(p, G) <= H(p, R) in the case of p ' := p/(p - 1) is an element of 2Z, where H(p, G) is the optimal constant of the Hausdorff-Young inequality.
引用
收藏
页数:30
相关论文
共 47 条
  • [1] Babenko K.I., 1961, Izv. Akad. Nauk SSSR Ser. Mat, V25, P531
  • [2] Estimate of the Lp-Fourier transform norm on strong *-regular exponential solvable Lie groups
    Baklouti, A.
    Ludwig, J.
    Scuto, L.
    Smaoui, K.
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (07) : 1173 - 1188
  • [3] Estimate of the Lp-Fourier transform norm on nilpotent Lie groups
    Baklouti, A
    Smaoui, K
    Ludwig, J
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 199 (02) : 508 - 520
  • [4] Baklouti A, 2020, J FOURIER ANAL APPL, V26, DOI 10.1007/s00041-020-09739-5
  • [5] On the norm of the Lp-Fourier transform on compact extensions of Rn
    Baklouti, Ali
    Inoue, Junko
    [J]. FORUM MATHEMATICUM, 2014, 26 (02) : 621 - 636
  • [6] On a reverse form of the Brascamp-Lieb inequality
    Barthe, F
    [J]. INVENTIONES MATHEMATICAE, 1998, 134 (02) : 335 - 361
  • [7] Optimal Young's inequality and its converse: A simple proof
    Barthe, F
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 1998, 8 (02) : 234 - 242
  • [8] INEQUALITIES IN FOURIER-ANALYSIS
    BECKNER, W
    [J]. ANNALS OF MATHEMATICS, 1975, 102 (01) : 159 - 182
  • [9] The Brascamp-Lieb inequalities: Finiteness, structure and extremals
    Bennett, Jonathan
    Carbery, Anthony
    Christ, Michael
    Tao, Terence
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2007, 17 (05) : 1343 - 1415
  • [10] ON THE NONLINEAR BRASCAMP-LIEB INEQUALITY
    Bennett, Jonathan
    Bez, Neal
    Buschenhenke, Stefan
    Cowling, Michael G.
    Flock, Taryn C.
    [J]. DUKE MATHEMATICAL JOURNAL, 2020, 169 (17) : 3291 - 3338