Self-mentoring: A new deep learning pipeline to train a self-supervised U-net for few-shot learning of bio-artificial capsule segmentation

被引:1
作者
Deleruyelle, Arnaud [1 ]
Versari, Cristian [1 ]
Klein, John [1 ]
机构
[1] Univ Lille, CNRS, Cent Lille, UMR 9189,CRIStAL, F-59000 Lille, France
关键词
Microscopy image segmentation; Few shot learning; Self-supervised learning; Semi-supervised learning; Deep learning; U-net; IMAGE SEGMENTATION; EXTRACTION;
D O I
10.1016/j.compbiomed.2022.106454
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Accurate segmentation of microscopic structures such as bio-artificial capsules in microscopy imaging is a prerequisite to the computer-aided understanding of important biomechanical phenomenons. State-of-the-art segmentation performances are achieved by deep neural networks and related data-driven approaches. Training these networks from only a few annotated examples is challenging while producing manually annotated images that provide supervision is tedious.Method: Recently, self-supervision, i.e. designing a neural pipeline providing synthetic or indirect supervision, has proved to significantly increase generalization performances of models trained on few shots. The objective of this paper is to introduce one such neural pipeline in the context of micro-capsule image segmentation. Our method leverages the rather simple content of these images so that a trainee network can be mentored by a referee network which has been previously trained on synthetically generated pairs of corrupted/correct region masks.Results: Challenging experimental setups are investigated. They involve from only 3 to 10 annotated images along with moderately large amounts of unannotated images. In a bio-artificial capsule dataset, our approach consistently and drastically improves accuracy. We also show that the learnt referee network is transferable to another Glioblastoma cell dataset and that it can be efficiently coupled with data augmentation strategies.Conclusions: Experimental results show that very significant accuracy increments are obtained by the proposed pipeline, leading to the conclusion that the self-supervision mechanism introduced in this paper has the potential to replace human annotations.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Self-Supervised Learning for Few-Shot Medical Image Segmentation
    Ouyang, Cheng
    Biffi, Carlo
    Chen, Chen
    Kart, Turkay
    Qiu, Huaqi
    Rueckert, Daniel
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (07) : 1837 - 1848
  • [2] Reinforced Self-Supervised Training for Few-Shot Learning
    Yan, Zhichao
    An, Yuexuan
    Xue, Hui
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 731 - 735
  • [3] SELF-SUPERVISED LEARNING FOR FEW-SHOT IMAGE CLASSIFICATION
    Chen, Da
    Chen, Yuefeng
    Li, Yuhong
    Mao, Feng
    He, Yuan
    Xue, Hui
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1745 - 1749
  • [4] A Self-Supervised Deep Learning Framework for Unsupervised Few-Shot Learning and Clustering
    Zhang, Hongjing
    Zhan, Tianyang
    Davidson, Ian
    PATTERN RECOGNITION LETTERS, 2021, 148 : 75 - 81
  • [5] DEEP SELF-SUPERVISED LEARNING FOR FEW-SHOT HYPERSPECTRAL IMAGE CLASSIFICATION
    Li, Yu
    Zhang, Lei
    Wei, Wei
    Zhang, Yanning
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 501 - 504
  • [6] SELF-SUPERVISED LEARNING FOR FEW-SHOT BIRD SOUND CLASSIFICATION
    Moummad, Ilyass
    Farrugia, Nicolas
    Serizel, Romain
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING WORKSHOPS, ICASSPW 2024, 2024, : 600 - 604
  • [7] SeSe-Net: Self-Supervised deep learning for segmentation
    Zeng Zeng
    Yang Xulei
    Yu Qiyun
    Yao Meng
    Zhang Le
    PATTERN RECOGNITION LETTERS, 2019, 128 : 23 - 29
  • [8] SCL: Self-supervised contrastive learning for few-shot image classification
    Lim, Jit Yan
    Lim, Kian Ming
    Lee, Chin Poo
    Tan, Yong Xuan
    NEURAL NETWORKS, 2023, 165 : 19 - 30
  • [9] Self-Supervised and Few-Shot Contrastive Learning Frameworks for Text Clustering
    Shi, Haoxiang
    Sakai, Tetsuya
    IEEE ACCESS, 2023, 11 : 84134 - 84143
  • [10] A review of self-supervised, generative, and few-shot deep learning methods for data-limited magnetic resonance imaging segmentation
    Liu, Zelong
    Kainth, Komal
    Zhou, Alexander
    Deyer, Timothy W.
    Fayad, Zahi A.
    Greenspan, Hayit
    Mei, Xueyan
    NMR IN BIOMEDICINE, 2024, 37 (08)