Active Learning Based Adversary Evasion Attacks Defense for Malwares in the Internet of Things

被引:5
作者
Ahmed, Usman [1 ]
Lin, Jerry Chun-Wei [1 ]
Srivastava, Gautam [2 ,3 ,4 ]
Jolfaei, Alireza [5 ]
机构
[1] Western Norway Univ Appl Sci, Dept Comp Sci Elect Engn & Math Sci, N-5063 Bergen, Norway
[2] Brandon Univ, Dept Math & Comp Sci, Brandon, MB R7A6A9, Canada
[3] China Med Ctr, Res Ctr Interneural Comp, Taichung 40402, Taiwan
[4] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon
[5] Flinders Univ S Australia, Coll Sci & Engn, Tonsley, Australia
来源
IEEE SYSTEMS JOURNAL | 2023年 / 17卷 / 02期
关键词
Adversarial attacks; android; Internet of Things (IoT); machine learning (ML); malicious adversaries; malware; static analysis;
D O I
10.1109/JSYST.2022.3223694
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we study adversarial evasion attacks in the context of an active learning environment. To prevent evasion attacks in Internet of Things environments, a feature subset selection method is proposed. To train an independent classification model for a single Android application, the approach extracts application-specific data from that application. We compare and evaluate the performance of Android malware benchmarks using ensemble-based active learning, followed by the use of a collaborative machine learning classifier to protect against adversarial evasion attacks on a dataset of Android malware benchmarks. It was found that the proposed approach generates 0.91 receiver operating characteristic with 14 fabricated input features.
引用
收藏
页码:2434 / 2444
页数:11
相关论文
共 28 条
[1]   Mitigating adversarial evasion attacks of ransomware using ensemble learning [J].
Ahmed, Usman ;
Lin, Jerry Chun-Wei ;
Srivastava, Gautam .
COMPUTERS & ELECTRICAL ENGINEERING, 2022, 100
[2]  
Al Zandi M, 2016, 2016 SYMPOSIUM ON DESIGN, TEST, INTEGRATION AND PACKAGING OF MEMS/MOEMS (DTIP)
[3]   Adversarial example detection for DNN models: a review and experimental comparison [J].
Aldahdooh, Ahmed ;
Hamidouche, Wassim ;
Fezza, Sid Ahmed ;
Deforges, Olivier .
ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (06) :4403-4462
[4]  
Aman M. N., 2021, IEEE SYSTEMS J, V16, P789
[5]   IoT-Proctor: A Secure and Lightweight Device Patching Framework for Mitigating Malware Spread in IoT Networks [J].
Aman, Muhammad Naveed ;
Javaid, Uzair ;
Sikdar, Biplab .
IEEE SYSTEMS JOURNAL, 2022, 16 (03) :3468-3479
[6]   Hybrid Android Malware Detection by Combining Supervised and Unsupervised Learning [J].
Arora, Anshul ;
Peddoju, Sateesh K. ;
Chouhan, Vikas ;
Chaudhary, Ajay .
MOBICOM'18: PROCEEDINGS OF THE 24TH ANNUAL INTERNATIONAL CONFERENCE ON MOBILE COMPUTING AND NETWORKING, 2018, :798-800
[7]   Drebin: Effective and Explainable Detection of Android Malware in Your Pocket [J].
Arp, Daniel ;
Spreitzenbarth, Michael ;
Huebner, Malte ;
Gascon, Hugo ;
Rieck, Konrad .
21ST ANNUAL NETWORK AND DISTRIBUTED SYSTEM SECURITY SYMPOSIUM (NDSS 2014), 2014,
[8]  
Blasing Thomas, 2010, 2010 5th International Conference on Malicious and Unwanted Software (MALWARE 2010), P55, DOI 10.1109/MALWARE.2010.5665792
[9]   Picking on the family: Disrupting android malware triage by forcing misclassification [J].
Calleja, Alejandro ;
Martin, Alejandro ;
Menendez, Hector D. ;
Tapiador, Juan ;
Clark, David .
EXPERT SYSTEMS WITH APPLICATIONS, 2018, 95 :113-126
[10]   Android HIV: A Study of Repackaging Malware for Evading Machine-Learning Detection [J].
Chen, Xiao ;
Li, Chaoran ;
Wang, Derui ;
Wen, Sheng ;
Zhang, Jun ;
Nepal, Surya ;
Xiang, Yang ;
Ren, Kui .
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2020, 15 :987-1001