Shift-splitting fixed point iteration method for solving generalized absolute value equations

被引:5
|
作者
Li, Xu [1 ]
Li, Yi-Xin [1 ]
Dou, Yan [1 ]
机构
[1] Lanzhou Univ Technol, Dept Appl Math, Lanzhou 730050, Peoples R China
基金
中国国家自然科学基金;
关键词
Generalized absolute value equation; Shift-splitting; Fixed point iteration; Convergence analysis; SOR-LIKE METHOD; PRECONDITIONERS; BLOCK; SYSTEMS;
D O I
10.1007/s11075-022-01435-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the shift-splitting strategy, we propose a shift-splitting fixed point iteration (FPI-SS) method for solving large sparse generalized absolute value equations (GAVEs). The FPI-SS method is based on reformulating the GAVE as a two-by-two block nonlinear equation. Several different types of convergence conditions of the FPI-SS method are presented under suitable restrictions. Through numerical experiments, we demonstrate that the FPI-SS method is superior to the fixed point iteration method and the SOR-like iteration method in computing efficiency.
引用
收藏
页码:695 / 710
页数:16
相关论文
共 50 条
  • [21] Accelerating the shift-splitting iteration algorithm
    Li, Zhizhi
    Chu, Risheng
    Zhang, Huai
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 361 : 421 - 429
  • [22] SOR-like iteration method for solving absolute value equations
    Ke, Yi-Fen
    Ma, Chang-Feng
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 311 : 195 - 202
  • [23] On the generalized shift-splitting preconditioner for saddle point problems
    Salkuyeh, Davod Khojasteh
    Masoudi, Mohsen
    Hezari, Davod
    APPLIED MATHEMATICS LETTERS, 2015, 48 : 55 - 61
  • [24] On the Alternative SOR-like Iteration Method for Solving Absolute Value Equations
    Zhang, Yiming
    Yu, Dongmei
    Yuan, Yifei
    SYMMETRY-BASEL, 2023, 15 (03):
  • [25] Shift-splitting iteration methods for a class of large sparse linear matrix equations
    Li, Xu
    Li, Rui-Feng
    AIMS MATHEMATICS, 2021, 6 (04): : 4105 - 4118
  • [26] Generalized shift-splitting preconditioners for nonsingular and singular generalized saddle point problems
    Shen, Qin-Qin
    Shi, Quan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 72 (03) : 632 - 641
  • [27] Two efficient iteration methods for solving the absolute value equations
    Yu, Xiaohui
    Wu, Qingbiao
    APPLIED NUMERICAL MATHEMATICS, 2025, 208 : 148 - 159
  • [28] A class of generalized shift-splitting preconditioners for nonsymmetric saddle point problems
    Cao, Yang
    Li, Sen
    Yao, Lin-Quan
    APPLIED MATHEMATICS LETTERS, 2015, 49 : 20 - 27
  • [29] A modified shift-splitting method for nonsymmetric saddle point problems
    Huang, Zhuo-Hong
    Su, Hong
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 317 : 535 - 546
  • [30] A modified generalized shift-splitting preconditioner for nonsymmetric saddle point problems
    Huang, Zheng-Ge
    Wang, Li-Gong
    Xu, Zhong
    Cui, Jing-Jing
    NUMERICAL ALGORITHMS, 2018, 78 (01) : 297 - 331