Critical Investigation of Metal-Organic-Frameworks to Improve the Silicon Anode of Lithium-Ion Batteries

被引:2
作者
Sturman, James W. [1 ,2 ,3 ]
Houache, Mohamed S. E. [1 ]
do Pim, Walace Doti [4 ]
Baranova, Elena A. [2 ,3 ]
Murugesu, Muralee [4 ]
Abu-Lebdeh, Yaser [1 ]
机构
[1] Natl Res Council Canada, Energy Min & Environm Res Ctr, Ottawa, ON K1A 0R6, Canada
[2] Univ Ottawa, Ctr Catalysis Res & Innovat CCRI, Dept Chem & Biol Engn, Ottawa, ON K1N 6N5, Canada
[3] Univ Ottawa, Nexus Quantum Technol NexQT, Ottawa, ON K1N 6N5, Canada
[4] Univ Ottawa, Dept Chem & Biomol Sci, Ottawa, ON K1N 6N5, Canada
关键词
silicon anode; energy storage; lithium-ionbattery; MOF; in situ growth; MOFS;
D O I
10.1021/acsaem.3c02040
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The poor capacity retention of the silicon (Si) anode has hindered its widespread use in lithium-ion batteries. Metal-organic-frameworks (MOF) may offer the structural and functional tunability needed to alleviate some of the longstanding problems associated with silicon pulverization. Herein, MOF-74 (Co-based) and MOF-199 (Cu-based) were implemented in different design configurations for high-Si loading electrodes. Multilayer sandwich configurations provided a modest improvement in capacity retention. However, greatest improvements in capacity retention were observed when the MOF was in situ synthesized onto the silicon surface (Si@MOF) and subsequently pyrolyzed. The best performing high-loading 0.5Si@MOF-c sample delivered a high capacity of 1000 mAh/g and retained 60% capacity after 100 cycles, surpassing a standard silicon-graphite composite.
引用
收藏
页码:21 / 30
页数:10
相关论文
共 50 条
  • [11] An Investigation of Titanium/Silicon Oxide-CNTs Anode Material for Lithium-Ion Batteries
    Zhang, Wenshan
    Li, Wensheng
    Zhou, Xiaoping
    [J]. BATTERIES & SUPERCAPS, 2020, 3 (05) : 439 - 449
  • [12] Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries
    Fei Dou
    Liyi Shi
    Guorong Chen
    Dengsong Zhang
    [J]. Electrochemical Energy Reviews, 2019, 2 : 149 - 198
  • [13] Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries
    Dou, Fei
    Shi, Liyi
    Chen, Guorong
    Zhang, Dengsong
    [J]. ELECTROCHEMICAL ENERGY REVIEWS, 2019, 2 (01) : 149 - 198
  • [14] Advanced electrolyte/additive for lithium-ion batteries with silicon anode
    Zhang, Shuo
    He, Meinan
    Su, Chi-Cheung
    Zhang, Zhengcheng
    [J]. CURRENT OPINION IN CHEMICAL ENGINEERING, 2016, 13 : 24 - 35
  • [15] Application and Development of Silicon Anode Binders for Lithium-Ion Batteries
    Shen, Huilin
    Wang, Qilin
    Chen, Zheng
    Rong, Changru
    Chao, Danming
    [J]. MATERIALS, 2023, 16 (12)
  • [16] Sustainable okra gum for silicon anode in lithium-ion batteries
    Ling, Han Yeu
    Hencz, Luke
    Chen, Hao
    Wu, Zhenzhen
    Su, Zhong
    Chen, Su
    Yan, Cheng
    Lai, Chao
    Liu, Xianhu
    Zhang, Shanqing
    [J]. SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2021, 28
  • [17] Silicon-Based Anode Materials for Lithium-Ion Batteries
    Jin, Niu
    Su, Zhang
    Yue, Niu
    Song Huaihe
    Chen Xiaohong
    Zhou Jisheng
    [J]. PROGRESS IN CHEMISTRY, 2015, 27 (09) : 1275 - 1290
  • [18] Tetrathiafulvalene-Cobalt Metal-Organic Frameworks for Lithium-Ion Batteries with Superb Rate Capability
    Weng, Yi-Gang
    Ren, Zhou-Hong
    Zhang, Zhi-Ruo
    Shao, Jie
    Zhu, Qin-Yu
    Dai, Jie
    [J]. INORGANIC CHEMISTRY, 2021, 60 (22) : 17074 - 17082
  • [19] Research Progress on Coating Structure of Silicon Anode Materials for Lithium-Ion Batteries
    Xu, Ke
    Liu, Xuefeng
    Guan, Keke
    Yu, Yingjie
    Lei, Wen
    Zhang, Shaowei
    Jia, Quanli
    Zhang, Haijun
    [J]. CHEMSUSCHEM, 2021, 14 (23) : 5135 - 5160
  • [20] Application of covalent organic frameworks (COFs) in lithium-ion batteries
    Ma W.
    Yao W.
    [J]. Huagong Jinzhan/Chemical Industry and Engineering Progress, 2023, 42 (10): : 5339 - 5352