Fractional Dynamics and Recurrence Analysis in Cancer Model

被引:2
作者
Gabrick, Enrique C. [1 ]
Sales, Matheus R. [1 ]
Sayari, Elaheh [1 ]
Trobia, Jose [2 ]
Lenzi, Ervin K. [1 ,3 ]
Borges, Fernando S. [4 ]
Szezech Jr., Jose D. [1 ,2 ]
Iarosz, Kelly C. [1 ,5 ,6 ]
Viana, Ricardo L. [6 ,7 ]
Caldas, Ibere L. [7 ]
Batista, Antonio M. [1 ,2 ,7 ]
机构
[1] Univ Estadual Ponta Grossa, Grad Program Sci, BR-84030900 Ponta Grossa, PR, Brazil
[2] Univ Estadual Ponta Grossa, Dept Math & Stat, BR-84030900 Ponta Grossa, PR, Brazil
[3] Univ Estadual Ponta Grossa, Dept Phys, BR-84030900 Ponta Grossa, PR, Brazil
[4] SUNY, Downstate Hlth Sci Univ, Dept Physiol & Pharmacol, Brooklyn, NY 11203 USA
[5] Univ Ctr UNIFATEB, BR-84266010 Telemaco Borba, PR, Brazil
[6] Univ Sao Paulo, Inst Phys, BR-05508090 Sao Paulo, SP, Brazil
[7] Univ Fed Parana, Dept Phys, BR-82590300 Curitiba, PR, Brazil
基金
瑞典研究理事会; 巴西圣保罗研究基金会;
关键词
Cancer model; Fractional calculus; Recurrence analysis; MATHEMATICAL-MODEL; TUMOR-GROWTH; CHAOS; STATISTICS; ENTROPY; PLOTS;
D O I
10.1007/s13538-023-01359-w
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, we analyze the effects of fractional derivatives in the chaotic dynamics of a cancer model. We begin by studying the dynamics of a standard model, i.e. with integer derivatives. We study the dynamical behavior by means of the bifurcation diagram, Lyapunov exponents, and recurrence quantification analysis (RQA), such as the recurrence rate (RR), the determinism (DET), and the recurrence time entropy (RTE). We find a high correlation coefficient between the Lyapunov exponents and RTE. Our simulations suggest that the tumor growth parameter (rho(1)) is associated with a chaotic regime. Our results suggest a high correlation between the largest Lyapunov exponents and RTE. After understanding the dynamics of the model in the standard formulation, we extend our results by considering fractional operators. We fix the parameters in the chaotic regime and investigate the effects of the fractional order. We demonstrate how fractional dynamics can be properly characterized using RQA measures, which offer the advantage of not requiring knowledge of the fractional Jacobian matrix. We find that the chaotic motion is suppressed as alpha decreases, and the system becomes periodic for alpha (sic) 0.9966. We observe limit cycles for alpha is an element of(0.9966, 0.899) and fixed points for alpha < 0.899. The fixed point is determined analytically for the considered parameters. Finally, we discover that these dynamics are separated by an exponential relationship between alpha and rho(1). Also, the transition depends on a supper transient which obeys the same relationship.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Chaos in a Fractional-Order Cancer System
    N'Doye, Ibrahima
    Voos, Holger
    Darouach, Mohamed
    2014 EUROPEAN CONTROL CONFERENCE (ECC), 2014, : 171 - 176
  • [12] Fractional order mathematical model of monkeypox transmission dynamics
    Peter, Olumuyiwa James
    Oguntolu, Festus Abiodun
    Ojo, Mayowa M.
    Oyeniyi, Abdulmumin Olayinka
    Jan, Rashid
    Khan, Ilyas
    PHYSICA SCRIPTA, 2022, 97 (08)
  • [13] Fractional Tumour-Immune Model with Drug Resistance
    Koltun, Ana P. S.
    Trobia, Jose
    Batista, Antonio M.
    Lenzi, Ervin K.
    Santos, Moises S.
    Borges, Fernando S.
    Iarosz, Kelly C.
    Caldas, Ibere L.
    Gabrick, Enrique C.
    BRAZILIAN JOURNAL OF PHYSICS, 2024, 54 (02)
  • [14] A fractional model for the dynamics of COVID-19 using Atangana-Baleanu fractional operators
    Ahmed, Shahid
    Jahan, Shah
    Nisar, Kottakkaran Sooppy
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2025, 39 (02): : 233 - 248
  • [15] A fractional model for the dynamics of TB virus
    Ullah, Saif
    Khan, Muhammad Altaf
    Farooq, Muhammad
    CHAOS SOLITONS & FRACTALS, 2018, 116 : 63 - 71
  • [16] Fractional Dynamics of a Measles Epidemic Model
    Abboubakar, Hamadjam
    Fandio, Rubin
    Sofack, Brandon Satsa
    Fouda, Henri Paul Ekobena
    AXIOMS, 2022, 11 (08)
  • [17] A FRACTIONAL DYNAMICS OF A POTATO DISEASE MODEL
    Bonyah, Ebenezer
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2022,
  • [18] Fractional Dynamics in Calcium Oscillation Model
    Suansook, Yoothana
    Paithoonwattanakij, Kitti
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [19] Recurrence analysis of fractional-order Lorenz system
    Rysak, Andrzej
    Gregorczyk, Magdalena
    14TH INTERNATIONAL CONFERENCE ON VIBRATION ENGINEERING AND TECHNOLOGY OF MACHINERY (VETOMAC XIV), 2018, 211
  • [20] Analysis and dynamics of fractional order Covid-19 model with memory effect
    Yadav, Supriya
    Kumar, Devendra
    Singh, Jagdev
    Baleanu, Dumitru
    RESULTS IN PHYSICS, 2021, 24