Non-autonomous inverse Jacobi multipliers and periodic orbits of planar vector fields

被引:0
|
作者
Garcia, Isaac A. [1 ]
Maza, Susanna [1 ]
机构
[1] Univ Lleida, Dept Matemat, Avda Jaume II 69, Lleida 25001, Spain
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2024年 / 130卷
关键词
Planar vector fields; Inverse Jacobi multiplier; Periodic orbit; EXISTENCE; R-3;
D O I
10.1016/j.cnsns.2023.107735
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the role that non-autonomous (and not necessarily periodic) inverse Jacobi multipliers have in the problem of the nonexistence, existence and localization as well as the hyperbolic nature of periodic orbits of planar vector fields. This work generalizes and extends previous results already appearing in the literature which are only focusing in the autonomous or periodic case. Therefore we are able to provide novel applications of inverse Jacobi multipliers.
引用
收藏
页数:5
相关论文
共 50 条
  • [11] Planar Vector Fields with a Given Set of Orbits
    Llibre, Jaume
    Ramirez, Rafael
    Sadovskaia, Natalia
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2011, 23 (04) : 885 - 902
  • [12] DESIGN AND APPLICATIONS OF SOLAR SAIL PERIODIC ORBITS IN THE NON-AUTONOMOUS EARTH-MOON SYSTEM
    Heiligers, Jeannette
    Macdonald, Malcolm
    Parker, Jeffrey S.
    ASTRODYNAMICS 2015, 2016, 156 : 845 - 864
  • [13] PERIODIC ORBITS IN PIECEWISE RICCATI VECTOR FIELDS
    Euzebio, Rodrigo D.
    Freitas, Bruno R.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (08): : 4325 - 4343
  • [14] BIFURCATION TO HOMOCLINIC ORBITS AND TO PERIODIC-SOLUTIONS FOR NON-AUTONOMOUS 3-DIMENSIONAL SYSTEMS
    COSTAL, F
    RODRIGUEZ, JA
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1988, 104 (02) : 185 - 194
  • [15] Foliated vector fields without periodic orbits
    Daniel Peralta-Salas
    Álvaro del Pino
    Francisco Presas
    Israel Journal of Mathematics, 2016, 214 : 443 - 462
  • [16] Foliated vector fields without periodic orbits
    Peralta-Salas, Daniel
    del Pino, Alvaro
    Presas, Francisco
    ISRAEL JOURNAL OF MATHEMATICS, 2016, 214 (01) : 443 - 462
  • [17] On the growth rate of periodic orbits for vector fields
    Wu, Wanlou
    Yang, Dawei
    Zhang, Yong
    ADVANCES IN MATHEMATICS, 2019, 346 : 170 - 193
  • [18] A BIFURCATION PROBLEM TO HOMOCLINIC ORBITS FOR NON-AUTONOMOUS SYSTEMS
    COSTAL, F
    RODRIGUEZ, JA
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1985, 105 (02) : 395 - 404
  • [19] Time-periodic measures, random periodic orbits, and the linear response for dissipative non-autonomous stochastic differential equations
    Michał Branicki
    Kenneth Uda
    Research in the Mathematical Sciences, 2021, 8
  • [20] Time-periodic measures, random periodic orbits, and the linear response for dissipative non-autonomous stochastic differential equations
    Branicki, Michal
    Uda, Kenneth
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2021, 8 (03)