Time optimal quantum state transfer in a fully-connected quantum computer

被引:0
作者
Jameson, Casey [1 ]
Basyildiz, Bora [2 ]
Moore, Daniel [1 ]
Clark, Kyle [1 ]
Gong, Zhexuan [1 ,3 ]
机构
[1] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA
[2] Colorado Sch Mines, Dept Comp Sci, Golden, CO 80401 USA
[3] NIST, Boulder, CO 80305 USA
关键词
quantum optimal control; quantum speed limits; quantum state transfer; Lieb-Robinson bounds; long-range interactions; PROPAGATION; INFORMATION; SPEED;
D O I
10.1088/2058-9565/ad0770
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The speed limit of quantum state transfer (QST) in a system of interacting particles is not only important for quantum information processing, but also directly linked to Lieb-Robinson-type bounds that are crucial for understanding various aspects of quantum many-body physics. For strongly long-range interacting systems such as a fully-connected quantum computer, such a speed limit is still unknown. Here we develop a new quantum brachistochrone method that can incorporate inequality constraints on the Hamiltonian. This method allows us to prove an exactly tight bound on the speed of QST on a subclass of Hamiltonians experimentally realizable by a fully-connected quantum computer.
引用
收藏
页数:17
相关论文
共 55 条
[1]  
[Anonymous], 2014, PHYS REV A, DOI [DOI 10.1007/978-3-642-74626-0_8, DOI 10.1103/PhysRevA.90.022307]
[2]   Introduction to the Pontryagin Maximum Principle for Quantum Optimal Control [J].
Boscain, U. ;
Sigalotti, M. ;
Sugny, D. .
PRX QUANTUM, 2021, 2 (03)
[3]   Quantum communication through an unmodulated spin chain [J].
Bose, S .
PHYSICAL REVIEW LETTERS, 2003, 91 (20)
[4]   Time-optimal quantum evolution - art. no. 060503 [J].
Carlini, A ;
Hosoya, A ;
Koike, T ;
Okudaira, Y .
PHYSICAL REVIEW LETTERS, 2006, 96 (06)
[5]   Time-optimal unitary operations [J].
Carlini, Alberto ;
Hosoya, Akio ;
Koike, Tatsuhiko ;
Okudaira, Yosuke .
PHYSICAL REVIEW A, 2007, 75 (04)
[6]   Time-optimal CNOT between indirectly coupled qubits in a linear Ising chain [J].
Carlini, Alberto ;
Hosoya, Akio ;
Koike, Tatsuhiko ;
Okudaira, Yosuke .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (14)
[7]   QUANTUM STATE TRANSFER THROUGH A QUBIT NETWORK WITH ENERGY SHIFTS AND FLUCTUATIONS [J].
Casaccino, Andrea ;
Lloyd, Seth ;
Mancini, Stefano ;
Severini, Simone .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2009, 7 (08) :1417-1427
[8]  
Chen C, 2023, Arxiv, DOI arXiv:2207.12930
[9]   Optimal Frobenius light cone in spin chains with power-law interactions [J].
Chen, Chi-Fang ;
Lucas, Andrew .
PHYSICAL REVIEW A, 2021, 104 (06)
[10]   Finite Speed of Quantum Scrambling with Long Range Interactions [J].
Chen, Chi-Fang ;
Lucas, Andrew .
PHYSICAL REVIEW LETTERS, 2019, 123 (25)