Non-Asymptotic Guarantees for Robust Statistical Learning under Infinite Variance Assumption

被引:0
作者
Xu, Lihu [1 ,2 ]
Yao, Fang [3 ,4 ]
Yao, Qiuran [2 ]
Zhang, Huiming [1 ,2 ,5 ]
机构
[1] Univ Macau, Dept Math, Taipa, Macau, Peoples R China
[2] Zhuhai UM Sci & Technol Res Inst, Zhuhai, Peoples R China
[3] Peking Univ, Dept Probabil & Stat, Beijing, Peoples R China
[4] Peking Univ, Ctr Stat Sci, Beijing, Peoples R China
[5] Beihang Univ, Inst Artificial Intelligence, Beijing, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
data with infinite variance; excess risk bounds; robust ridge regressions; robust elastic net regressions; robust non-convex regressions; robust deep neural network (DNN) regressions; DEEP NEURAL-NETWORKS; EMPIRICAL RISK; REGRESSION; ESTIMATORS; DISTRIBUTIONS; SELECTION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
There has been a surge of interest in developing robust estimators for models with heavytailed and bounded variance data in statistics and machine learning, while few works impose unbounded variance. This paper proposes two types of robust estimators, the ridge logtruncated M-estimator and the elastic net log-truncated M-estimator. The first estimator is applied to convex regressions such as quantile regression and generalized linear models, while the other one is applied to high dimensional non-convex learning problems such as robustness of log-truncated estimations over standard estimations.
引用
收藏
页数:46
相关论文
共 59 条
[1]  
Baraud Y, 2017, INVENT MATH, V207, P425, DOI 10.1007/s00222-016-0673-5
[2]   Empirical minimization [J].
Bartlett, PL ;
Mendelson, S .
PROBABILITY THEORY AND RELATED FIELDS, 2006, 135 (03) :311-334
[3]   EMPIRICAL RISK MINIMIZATION FOR HEAVY-TAILED LOSSES [J].
Brownlees, Christian ;
Joly, Emilien ;
Lugosi, Gabor .
ANNALS OF STATISTICS, 2015, 43 (06) :2507-2536
[4]   Challenging the empirical mean and empirical variance: A deviation study [J].
Catoni, Olivier .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2012, 48 (04) :1148-1185
[5]   A generalized Catoni's M-estimator under finite α-th moment assumption with α (1,2)∈ [J].
Chen, Peng ;
Jin, Xinghu ;
Li, Xiang ;
Xu, Lihu .
ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (02) :5523-5544
[6]  
Chen YX, 2021, ANN STAT, V49, P2948, DOI [10.1214/21-aos2066, 10.1214/21-AOS2066]
[7]  
Chi ZY, 2010, Arxiv, DOI [arXiv:1009.1052, DOI 10.48550/ARXIV.1009.1052]
[8]   Robust statistical learning with Lipschitz and convex loss functions [J].
Chinot, Geoffrey ;
Lecue, Guillaume ;
Lerasle, Matthieu .
PROBABILITY THEORY AND RELATED FIELDS, 2020, 176 (3-4) :897-940
[9]  
Fan JQ, 2022, Arxiv, DOI arXiv:2203.10418
[10]  
Fan JQ, 2021, STAT SCI, V36, P264, DOI [10.1214/20-STS783, 10.1214/20-sts783]