Pulsar Candidate Classification Using a Computer Vision Method from a Combination of Convolution and Attention

被引:3
作者
Cai, Nannan [1 ,2 ]
Han, Jinlin [1 ,2 ,3 ]
Jing, Weicong [1 ,2 ]
Zhang, Zekai [4 ]
Zhou, Dejiang [1 ,2 ]
Chen, Xue [1 ,2 ]
机构
[1] Chinese Acad Sci, Natl Astron Observ, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Sch Astron, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, CAS Key Lab FAST, NAOC, Beijing 100101, Peoples R China
[4] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA
基金
中国国家自然科学基金;
关键词
(stars:) pulsars: general; methods: data analysis; techniques: image processing; NEURAL-NETWORK; SELECTION;
D O I
10.1088/1674-4527/accdc2
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Artificial intelligence methods are indispensable to identifying pulsars from large amounts of candidates. We develop a new pulsar identification system that utilizes the CoAtNet to score two-dimensional features of candidates, implements a multilayer perceptron to score one-dimensional features, and relies on logistic regression to judge the corresponding scores. In the data preprocessing stage, we perform two feature fusions separately, one for one-dimensional features and the other for two-dimensional features, which are used as inputs for the multilayer perceptron and the CoAtNet respectively. The newly developed system achieves 98.77% recall, 1.07% false positive rate (FPR) and 98.85% accuracy in our GPPS test set.
引用
收藏
页数:9
相关论文
共 33 条
  • [11] ImageNet Classification with Deep Convolutional Neural Networks
    Krizhevsky, Alex
    Sutskever, Ilya
    Hinton, Geoffrey E.
    [J]. COMMUNICATIONS OF THE ACM, 2017, 60 (06) : 84 - 90
  • [12] Gradient-based learning applied to document recognition
    Lecun, Y
    Bottou, L
    Bengio, Y
    Haffner, P
    [J]. PROCEEDINGS OF THE IEEE, 1998, 86 (11) : 2278 - 2324
  • [13] Li X, 2019, Arxiv, DOI [arXiv:1903.06586, 10.48550/arXiv.1903.06586]
  • [14] Pulsar Candidate Sifting Using Multi-input Convolution Neural Networks
    Lin, Haitao
    Li, Xiangru
    Zeng, Qingguo
    [J]. ASTROPHYSICAL JOURNAL, 2020, 899 (02)
  • [15] Pulsars detection by machine learning with very few features
    Lin, Haitao
    Li, Xiangru
    Luo, Ziying
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 493 (02) : 1842 - 1854
  • [16] Fifty years of pulsar candidate selection: from simple filters to a new principled real-time classification approach
    Lyon, R. J.
    Stappers, B. W.
    Cooper, S.
    Brooke, J. M.
    Knowles, J. D.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 459 (01) : 1104 - 1123
  • [17] SPINN: a straightforward machine learning solution to the pulsar candidate selection problem
    Morello, V.
    Barr, E. D.
    Bailes, M.
    Flynn, C. M.
    Keane, E. F.
    van Straten, W.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 443 (02) : 1651 - 1662
  • [18] THE FIVE-HUNDRED-METER APERTURE SPHERICAL RADIO TELESCOPE (FAST) PROJECT
    Nan, Rendong
    Li, Di
    Jin, Chengjin
    Wang, Qiming
    Zhu, Lichun
    Zhu, Wenbai
    Zhang, Haiyan
    Yue, Youling
    Qian, Lei
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2011, 20 (06): : 989 - 1024
  • [19] Sandler M, 2019, Arxiv, DOI [arXiv:1801.04381, DOI 10.48550/ARXIV.1801.04381]
  • [20] Simonyan K., 2014, arXiv