Pulsar Candidate Classification Using a Computer Vision Method from a Combination of Convolution and Attention

被引:3
作者
Cai, Nannan [1 ,2 ]
Han, Jinlin [1 ,2 ,3 ]
Jing, Weicong [1 ,2 ]
Zhang, Zekai [4 ]
Zhou, Dejiang [1 ,2 ]
Chen, Xue [1 ,2 ]
机构
[1] Chinese Acad Sci, Natl Astron Observ, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Sch Astron, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, CAS Key Lab FAST, NAOC, Beijing 100101, Peoples R China
[4] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA
基金
中国国家自然科学基金;
关键词
(stars:) pulsars: general; methods: data analysis; techniques: image processing; NEURAL-NETWORK; SELECTION;
D O I
10.1088/1674-4527/accdc2
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Artificial intelligence methods are indispensable to identifying pulsars from large amounts of candidates. We develop a new pulsar identification system that utilizes the CoAtNet to score two-dimensional features of candidates, implements a multilayer perceptron to score one-dimensional features, and relies on logistic regression to judge the corresponding scores. In the data preprocessing stage, we perform two feature fusions separately, one for one-dimensional features and the other for two-dimensional features, which are used as inputs for the multilayer perceptron and the CoAtNet respectively. The newly developed system achieves 98.77% recall, 1.07% false positive rate (FPR) and 98.85% accuracy in our GPPS test set.
引用
收藏
页数:9
相关论文
共 33 条
  • [1] Pulsar candidate identification using semi-supervised generative adversarial networks
    Balakrishnan, Vishnu
    Champion, David
    Barr, Ewan
    Kramer, Michael
    Sengar, Rahul
    Bailes, Matthew
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 505 (01) : 1180 - 1194
  • [2] The High Time Resolution Universe Pulsar Survey - VI. An artificial neural network and timing of 75 pulsars
    Bates, S. D.
    Bailes, M.
    Barsdell, B. R.
    Bhat, N. D. R.
    Burgay, M.
    Burke-Spolaor, S.
    Champion, D. J.
    Coster, P.
    D'Amico, N.
    Jameson, A.
    Johnston, S.
    Keith, M. J.
    Kramer, M.
    Levin, L.
    Lyne, A.
    Milia, S.
    Ng, C.
    Nietner, C.
    Possenti, A.
    Stappers, B.
    Thornton, D.
    van Straten, W.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 427 (02) : 1052 - 1065
  • [3] Dai Zihang, 2021, arXiv
  • [4] Dosovitskiy A, 2021, Arxiv, DOI arXiv:2010.11929
  • [5] Selection of radio pulsar candidates using artificial neural networks
    Eatough, R. P.
    Molkenthin, N.
    Kramer, M.
    Noutsos, A.
    Keith, M. J.
    Stappers, B. W.
    Lyne, A. G.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 407 (04) : 2443 - 2450
  • [6] Pulsar candidate classification using generative adversary networks
    Guo, Ping
    Duan, Fuqing
    Wang, Pei
    Yao, Yao
    Yin, Qian
    Xin, Xin
    Li, Di
    Qian, Lei
    Wang, Shen
    Pan, Zhichen
    Zhang, Lei
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 490 (04) : 5424 - 5439
  • [7] The FAST Galactic Plane Pulsar Snapshot survey: I. Project design and pulsar discoveries
    Han, J. L.
    Wang, Chen
    Wang, P. F.
    Wang, Tao
    Zhou, D. J.
    Sun, Jing-Hai
    Yan, Yi
    Su, Wei-Qi
    Jing, Wei-Cong
    Chen, Xue
    Gao, X. Y.
    Hou, Li-Gang
    Xu, Jun
    Lee, K. J.
    Wang, Na
    Jiang, Peng
    Xu, Ren-Xin
    Yan, Jun
    Gan, Heng-Qian
    Guan, Xin
    Huang, Wen-Jun
    Jiang, Jin-Chen
    Li, Hui
    Men, Yun-Peng
    Sun, Chun
    Wang, Bo-Jun
    Wang, H. G.
    Wang, Shuang-Qiang
    Xie, Jin-Tao
    Xu, Heng
    Yao, Rui
    You, Xiao-Peng
    Yu, D. J.
    Yuan, Jian-Ping
    Yuen, Rai
    Zhang, Chun-Feng
    Zhu, Yan
    [J]. RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2021, 21 (05)
  • [8] Hendrycks D, 2020, Arxiv, DOI arXiv:1606.08415
  • [9] Hu J, 2019, Arxiv, DOI [arXiv:1709.01507, DOI 10.48550/ARXIV.1709.01507]
  • [10] Jaderberg M, 2016, Arxiv, DOI [arXiv:1506.02025, DOI 10.48550/ARXIV.1506.02025]