Tensegrity triboelectric nanogenerator for broadband blue energy harvesting in all-sea areas

被引:21
|
作者
Ning, Heng [1 ,2 ,3 ]
Zhou, Weiyu [1 ,2 ,3 ]
Tuo, Liang [2 ]
Liang, Chuangjian [1 ,2 ,3 ]
Chen, Chunjin [1 ,2 ,3 ]
Li, Songying [1 ,2 ,3 ]
Qu, Hang [1 ,2 ,3 ]
Wan, Lingyu [1 ,2 ,3 ]
Liu, Guanlin [1 ,2 ,3 ]
机构
[1] Guangxi Univ, Carbon Peak & Neutral Sci & Technol Dev Inst, Ctr Nanoenergy Res, Guangxi Coll,Sch Phys Sci & Technol, Nanning 530004, Peoples R China
[2] Guangxi Univ, Univ Key Lab Blue Energy & Syst Integrat, Carbon Peak & Neutral Sci & Technol Dev Inst, Sch Phys Sci & Technol, Nanning 530004, Peoples R China
[3] State Key Lab Featured Met Mat & Life cycle Safety, Nanning 530004, Peoples R China
关键词
Triboelectric nanogenerator; Tensegrity; Broadband; Blue energy; WATER-WAVE ENERGY;
D O I
10.1016/j.nanoen.2023.108906
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The integration of high-density friction layer units is a promising approach for achieving high output in triboelectric nanogenerators (TENGs). Yet, the synchronization and sufficient contact separation of these high-density layer units are inherently challenging due to the cumulative impact of gravity. Herein, a tensegrity structure was applied and effectively organized the high-density stacked TENG units into an ordered whole, thereby proposing the T-TENG. Along with achieving orderly contact and separation of high-density friction layers, the T-TENG effectively reduced the device's height (up to 52%) and improved the friction layer surface area density (up to 1.07 cm-1). Significantly, the built-in prestress modulation not only enhances the device's load-bearing capacity but also enables ease in changing the T-TENG's response frequency by adjusting the prestress value. This is especially suitable for efficiently capturing omnidirectional wave energy in all-sea areas with frequency variations. The working mechanism and output influencing parameters of T-TENG were systematically expounded, and it demonstrated a maximum output voltage of up to 1020 V and output charge per unit time of 0.816 mC/ min, sufficient to light up to 1512 LEDs directly. Moreover, customization of low-loss gas discharge tubes to amplify outputs allows T-TENG to harvest wave energy for power supply to small electronic devices such as water quality testing pens and Bluetooth modules when placed over water bodies. This work provides a foundational model to develop high-density friction layers and high-output TENGs.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] All-polymer waterproof triboelectric nanogenerator towards blue energy harvesting and self-powered human motion detection
    Zaw, Nay Yee Win
    Yun, Jonghyeon
    Goh, Tae Sik
    Kim, Inkyum
    Kim, Youngsu
    Lee, Jung Sub
    Kim, Daewon
    ENERGY, 2022, 247
  • [22] Swing Origami-Structure-Based Triboelectric Nanogenerator for Harvesting Blue Energy toward Marine Environmental Applications
    Liu, Weilong
    Wang, Xiutong
    Yang, Lihui
    Wang, Youqiang
    Xu, Hui
    Sun, Yanan
    Nan, Youbo
    Sun, Congtao
    Zhou, Hui
    Huang, Yanliang
    ADVANCED SCIENCE, 2024, 11 (23)
  • [23] Triboelectric nanogenerator based wearable energy harvesting devices
    Ding Ya-Fei
    Chen Xiang-Yu
    ACTA PHYSICA SINICA, 2020, 69 (17)
  • [24] Nonlinear Dynamics of Wind Energy Harvesting Triboelectric Nanogenerator
    Mo, Shuai
    Zeng, Yanjun
    Wang, Zhen
    Zhang, Yingxin
    Zhou, Yuansheng
    Zhang, Jielu
    Zhang, Wei
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2025, 13 (04)
  • [25] Soft Tubular Triboelectric Nanogenerator for Biomechanical Energy Harvesting
    Liu, Guo Xu
    Li, Wen Jian
    Liu, Wen Bo
    Bu, Tian Zhao
    Guo, Tong
    Jiang, Dong Dong
    Zhao, Jun Qing
    Xi, Feng Ben
    Hu, Wei Guo
    Zhang, Chi
    ADVANCED SUSTAINABLE SYSTEMS, 2018, 2 (12):
  • [26] A Spherical Hybrid Triboelectric Nanogenerator for Enhanced Water Wave Energy Harvesting
    Lee, Kwangseok
    Lee, Jeong-won
    Kim, Kihwan
    Yoo, Donghyeon
    Kim, Dong Sung
    Hwang, Woonbong
    Song, Insang
    Sim, Jae-Yoon
    MICROMACHINES, 2018, 9 (11):
  • [27] Silicone-Based Triboelectric Nanogenerator for Water Wave Energy Harvesting
    Xiao, Tian Xiao
    Jiang, Tao
    Zhu, Jian Xiong
    Liang, Xi
    Xu, Liang
    Shao, Jia Jia
    Zhang, Chun Lei
    Wang, Jie
    Wang, Zhong Lin
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (04) : 3616 - 3623
  • [28] Triboelectric nanogenerator with a seesaw structure for harvesting ocean energy
    Cheng, Jiahui
    Zhang, Xiaolong
    Jia, Tingwei
    Wu, Qian
    Dong, Yang
    Wang, Daoai
    NANO ENERGY, 2022, 102
  • [29] A Triboelectric Nanogenerator for Energy Harvesting from Transformers' Vibrations
    Simoes, Agnes Nascimento
    Carvalho, Danilo Jose
    Morita, Eugenio de Souza
    Moretti, Haroldo Luiz
    Vendrameto, Helen Velozo
    Fu, Li
    Torres, Floriano
    de Souza, Andre Nunes
    Bizzo, Waldir Antonio
    Mazon, Talita
    MACHINES, 2022, 10 (03)
  • [30] Marine monitoring based on triboelectric nanogenerator: Ocean energy harvesting and sensing
    Hao, Yutao
    Li, Xiangmeng
    Chen, Baodong
    Zhu, Zhiyuan
    FRONTIERS IN MARINE SCIENCE, 2022, 9