Skyrmionium-based Leaky Integrate and Fire Neuron

被引:3
作者
Saini, Shipra [1 ]
Bindal, Namita [1 ]
Kaushik, Brajesh Kumar [1 ]
机构
[1] Indian Inst Technol Roorkee, Dept Elect & Commun Engn, Roorkee, Uttarakhand, India
来源
2023 IEEE 23RD INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY, NANO | 2023年
关键词
MODEL;
D O I
10.1109/NANO58406.2023.10231255
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Neuromorphic computing is an intriguing paradigm for the development of low-power devices. The incorporation of spintronic devices offers nonlinearity and short-term memory effects that are the crucial functions to facilitate the neuromorphic devices with enhanced energy efficiency. A skyrmionium can be considered as one of the promising spin textures for these applications, since it follows straight trajectory along the nanotrack owing to the zero net topological charge. This work proposes a neuron based on the skyrmionium and utilizes the gradient of perpendicular magnetic anisotropy (PMA) on the nanotrack to achieve the leaky-integrate-fire (LIF) functionality. This gradient generates the different energy states and is responsible for inducing the leaky behaviour in the device by moving the skyrmionium in a direction to minimize the energy. It is reported that the suggested device is 15.5% more energy-efficient than the AFM skyrmion-based LIF neuron, dissipating 3.74 fJ of energy per LIF operation. This proposed artificial neuron potentially enable the development of a power-efficient and dense spiking neuromorphic computing system with a straightforward single-device implementation.
引用
收藏
页码:209 / 214
页数:6
相关论文
共 31 条
[1]  
Asifuzzaman K., 2023, Memories-Materials Devices Circuits and Systems, V4, DOI [10.1016/j.memori.2022.100022, DOI 10.1016/J.MEMORI.2022.100022]
[2]   Resonate and fire neuron with fixed magnetic skyrmions [J].
Azam, Md. Ali ;
Bhattacharya, Dhritiman ;
Querlioz, Damien ;
Atulasimha, Jayasimha .
JOURNAL OF APPLIED PHYSICS, 2018, 124 (15)
[3]  
Bindal N, 2022, Arxiv, DOI arXiv:2207.10462
[4]   Adaptive exponential integrate-and-fire model as an effective description of neuronal activity [J].
Brette, R ;
Gerstner, W .
JOURNAL OF NEUROPHYSIOLOGY, 2005, 94 (05) :3637-3642
[5]   Shape-Based Magnetic Domain Wall Drift for an Artificial Spintronic Leaky Integrate-and-Fire Neuron [J].
Brigner, Wesley H. ;
Friedman, Joseph S. ;
Hassan, Naimul ;
Jiang-Wei, Lucian ;
Hu, Xuan ;
Saha, Diptish ;
Bennett, Christopher H. ;
Marinella, Matthew J. ;
Incorvia, Jean Anne C. ;
Garcia-Sanchez, Felipe .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2019, 66 (11) :4970-4975
[6]   A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input [J].
Burkitt, A. N. .
BIOLOGICAL CYBERNETICS, 2006, 95 (01) :1-19
[7]   Magnetic skyrmions: advances in physics and potential applications [J].
Fert, Albert ;
Reyren, Nicolas ;
Cros, Vincent .
NATURE REVIEWS MATERIALS, 2017, 2 (07)
[8]   Magnetic skyrmion states in cobalt nanodisk [J].
Gallegos, F. A. ;
Alegre, J. W. ;
Costilla, J., I ;
Pujada, B. R. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2020, 512
[9]   Electrical writing, deleting, reading, and moving of magnetic skyrmioniums in a racetrack device [J].
Goebel, Boerge ;
Schaeffer, Alexander F. ;
Berakdar, Jamal ;
Mertig, Ingrid ;
Parkin, Stuart S. P. .
SCIENTIFIC REPORTS, 2019, 9 (1)
[10]   Elimination of the skyrmion Hall effect by tuning perpendicular magnetic anisotropy and spin polarization angle [J].
Guo, J. H. ;
Hou, Y. ;
Zhang, X. ;
Pong, Philip W. T. ;
Zhou, Y. .
PHYSICS LETTERS A, 2022, 456