Topology of Magnetic and Velocity Fields at Kinetic Scales in Incompressible Plasma Turbulence

被引:9
作者
Zhang, J. [1 ]
Huang, S. Y. [1 ,2 ]
Sahraoui, F. [3 ]
Andres, N. [4 ,5 ]
Yuan, Z. G. [1 ]
Jiang, K. [1 ]
Xu, S. B. [1 ]
Wei, Y. Y. [1 ]
Xiong, Q. Y. [1 ]
Wang, Z. [1 ]
Lin, R. T. [1 ]
Yu, L. [1 ]
机构
[1] Wuhan Univ, Sch Elect Informat, Wuhan, Peoples R China
[2] Hubei Luojia Lab, Wuhan, Peoples R China
[3] Sorbonne Univ, Paris Saclay Observ Paris Meudon, CNRS Ecole Polytech, Lab Phys Plasmas, Palaiseau, France
[4] UBA, Dept Fis, Fac Ciencias Exactas & Nat, Ciudad Univ, Buenos Aires, Argentina
[5] CONICET UBA, Inst Astron & Fis Espacio, Buenos Aires, Argentina
基金
中国国家自然科学基金;
关键词
GRADIENT TENSOR; SOLAR-WIND; DYNAMICS; INVARIANTS;
D O I
10.1029/2022JA031064
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The topology of the magnetic and velocity fields at the kinetic scales are investigated in the context of nearly incompressible magnetosheath plasma turbulence. Using the unprecedented high-resolution data from the Magnetospheric MultiScale mission, the joint probability distribution functions of geometrical invariants characterizing the magnetic and velocity fields gradient tensor at the kinetic scales are computed. The topological features of the magnetic and velocity field gradient tensors and their symmetric component tensors present axisymmetric distribution patterns, indicating that the structure of the plasma turbulence at the kinetic scales are different from those in hydrodynamic and magnetohydrodynamic turbulence. Moreover, a strong correlation between the straining and rotational parts of the magnetic and velocity field gradient tensors was found, which manifests the dominance of sheet-like structures at the kinetic-scales dissipation in incompressible plasma turbulence.
引用
收藏
页数:9
相关论文
共 64 条
[1]   Universality of Solar-Wind Turbulent Spectrum from MHD to Electron Scales [J].
Alexandrova, O. ;
Saur, J. ;
Lacombe, C. ;
Mangeney, A. ;
Mitchell, J. ;
Schwartz, S. J. ;
Robert, P. .
PHYSICAL REVIEW LETTERS, 2009, 103 (16)
[2]  
Alexandrova O., 2021, ARXIV
[3]   The incompressible energy cascade rate in anisotropic solar wind turbulence [J].
Andres, N. ;
Sahraoui, F. ;
Huang, S. ;
Hadid, L. Z. ;
Galtier, S. .
ASTRONOMY & ASTROPHYSICS, 2022, 661
[4]   The Evolution of Compressible Solar Wind Turbulence in the Inner Heliosphere: PSP, THEMIS, and MAVEN Observations [J].
Andres, N. ;
Sahraoui, F. ;
Hadid, L. Z. ;
Huang, S. Y. ;
Romanelli, N. ;
Galtier, S. ;
DiBraccio, G. ;
Halekas, J. .
ASTROPHYSICAL JOURNAL, 2021, 919 (01)
[5]   Solar Wind Turbulence Around Mars: Relation between the Energy Cascade Rate and the Proton Cyclotron Waves Activity [J].
Andres, Nahuel ;
Romanelli, Norberto ;
Hadid, Lina Z. ;
Sahraoui, Fouad ;
DiBraccio, Gina ;
Halekas, Jasper .
ASTROPHYSICAL JOURNAL, 2020, 902 (02)
[6]   Statistics of Kinetic Dissipation in the Earth's Magnetosheath: MMS Observations [J].
Bandyopadhyay, Riddhi ;
Matthaeus, William H. ;
Parashar, Tulasi N. ;
Yang, Yan ;
Chasapis, Alexandros ;
Giles, Barbara L. ;
Gershman, Daniel J. ;
Pollock, Craig J. ;
Russell, Christopher T. ;
Strangeway, Robert J. ;
Torbert, Roy B. ;
Moore, Thomas E. ;
Burch, James L. .
PHYSICAL REVIEW LETTERS, 2020, 124 (25)
[7]   Topology of fine-scale motions in turbulent channel flow [J].
Blackburn, HM ;
Mansour, NN ;
Cantwell, BJ .
JOURNAL OF FLUID MECHANICS, 1996, 310 :269-292
[8]   Structure and dynamics of small-scale turbulence in vaporizing two-phase flows [J].
Boukharfane, Radouan ;
Er-raiy, Aimad ;
Parsani, Matteo ;
Chakraborty, Nilanjan .
SCIENTIFIC REPORTS, 2021, 11 (01)
[9]   The Solar Wind as a Turbulence Laboratory [J].
Bruno, Roberto ;
Carbone, Vincenzo .
LIVING REVIEWS IN SOLAR PHYSICS, 2013, 10 (02) :7-+
[10]   Intermittency in Solar Wind Turbulence From Fluid to Kinetic Scales [J].
Bruno, Roberto .
EARTH AND SPACE SCIENCE, 2019, 6 (05) :656-672