Coefficient Estimate on Second Hankel Determinant of the Logarithmic Coefficients for Close-To-Convex Function Subclass with Respect to the Koebe Function

被引:0
作者
Soh, Shaharuddin Cik [1 ]
Mohamad, Daud [1 ]
Dzubaidi, Huzaifah [1 ]
机构
[1] Univ Teknol Mara UITM, Fac Comp & Math Sci, Dept Math, Shah Alam 40450, Selangor Darul, Malaysia
来源
MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES | 2023年 / 19卷 / 02期
关键词
Univalent functions; analytic functions; Hankel determinant; close-to-convex functions;
D O I
10.11113/mjfas.v19n2.2675
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Let S denote the subclass of the analytic function and univalent functions in D, where D is defined as the unit disk and having the Taylor representation form of S. In this paper, we will estimate the second Hankel determinant which the elements are the logarithmic coefficients of the class close-to-convex function with respect to the Koebe function in S.
引用
收藏
页码:154 / 163
页数:10
相关论文
共 23 条
[1]  
Al-Refai O., 2009, European J. Sci. Res, V28, P234
[2]   ON LOGARITHMIC COEFFICIENTS OF SOME CLOSE-TO-CONVEX FUNCTIONS [J].
Ali, Md Firoz ;
Vasudevarao, A. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (03) :1131-1142
[3]   LOGARITHMIC COEFFICIENTS OF SOME CLOSE-TO-CONVEX FUNCTIONS [J].
Ali, Md Firoz ;
Vasudevarao, A. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 95 (02) :228-237
[4]  
Allu V, 2021, ARXIV
[5]  
Allu V, 2021, Arxiv, DOI arXiv:2110.05161
[6]   On the third logarithmic coefficient in some subclasses of close-to-convex functions [J].
Cho, Nak Eun ;
Kowalczyk, Bogumila ;
Kwon, Oh Sang ;
Lecko, Adam ;
Sim, Young Jae .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (02)
[7]   On the logarithmic coefficients of close-to-convex functions [J].
Elhosh, MM .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1996, 60 :1-6
[8]  
Girela D, 2000, ANN ACAD SCI FENN-M, V25, P337
[9]  
Goodman AW., 1983, Univalent Functions, Vol 1 and Vol 2
[10]  
Janteng A., 2007, Int. J. Math. Anal, V1, P619