FINITE GROUPS WITH s-ABNORMAL SCHMIDT SUBGROUPS

被引:0
作者
Li, H. [1 ]
Wang, Zh. [1 ]
Safonova, I. N. [2 ]
Skiba, A. N. [3 ]
机构
[1] Hainan Univ, Sch Sci, Haikou, Peoples R China
[2] Belarusian State Univ, Minsk, BELARUS
[3] Francisk Skorina Gomel State Univ, Gomel, BELARUS
关键词
finite group; a-soluble group; a-nilpotent group; Schmidt group; a-abnormal subgroup;
D O I
10.1134/S0037446623030114
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group and lets = {s(i)| i? I} be a partition of the set of all primes P. The group G is s-primary if G is a si-group for some i ? I; while G is s-nilpotent if G is the direct product of s-primary subgroups; and G is a Schmidt group if G is nonnilpotent but each proper subgroup in G is nilpotent. A subgroup A of G is s-abnormal in G if for all subgroups K < H in G, where A < K, the quotient group H/K-H is not a-primary. We describe the structure of finite groups whose every non -a-nilpotent Schmidt subgroup is a-abnormal.
引用
收藏
页码:629 / 638
页数:10
相关论文
共 50 条
  • [31] Groups with Prescribed Systems of Schmidt Subgroups
    Murashka, V. I.
    SIBERIAN MATHEMATICAL JOURNAL, 2019, 60 (02) : 334 - 342
  • [32] Finite groups with P- subnormal Schmidt subgroups.
    Yi, X.
    Xu, Zh.
    Kamornikov, S. F.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2024, 30 (01): : 100 - 108
  • [33] On finite groups with K-Nσ-subnormal Schmidt subgroups
    Hussain, Muhammad Tanveer
    ALGEBRA AND DISCRETE MATHEMATICS, 2024, 37 (02): : 236 - 243
  • [34] FINITE GROUPS WITH HEREDITARILY G-PERMUTABLE SCHMIDT SUBGROUPS
    Ballester-Bolinches, A.
    Kamornikov, S. F.
    Perez-calabuig, V.
    Tyutyanov, V. N.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2024, 109 (03) : 522 - 528
  • [35] On the Normality of Fω-Abnormal Maximal Subgroups of Finite Groups
    Sorokina, M. M.
    Maksakov, S. P.
    MATHEMATICAL NOTES, 2020, 108 (3-4) : 409 - 418
  • [36] On F-abnormal maximal subgroups of finite groups
    Li, Shi Rong
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (05) : 885 - 888
  • [37] Finite groups all of whose subgroups are σ-subnormal or σ-abnormal
    Huang, Jianhong
    Hu, Bin
    Wu, Xinwei
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (10) : 4542 - 4549
  • [39] A generalization of Schmidt’s Theorem on groups with all subgroups nilpotent
    Mohammad Zarrin
    Archiv der Mathematik, 2012, 99 : 201 - 206
  • [40] On ICΦS- subgroups of finite groups
    Zhang, Xinjian
    Xu, Yong
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (09) : 3853 - 3858