Molten Salt-Assisted Synthesis of Single-Crystalline Nonstoichiometric Li1+xNi1-xO2 with Improved Structural Stability

被引:2
作者
Ding, Guoyu [1 ]
Yao, Meng [1 ]
Li, Jinhan [1 ]
Yang, Tingting [2 ]
Zhang, Yudong [1 ,3 ]
Liu, Kuiming [1 ]
Huang, Xinhui [1 ]
Wu, Zhonghan [1 ]
Chen, Jiayu [1 ]
Wu, Ziyan [1 ]
Du, Jiayong [1 ]
Rong, Changru [4 ]
Liu, Qi [2 ]
Zhang, Wei [1 ,5 ]
Cheng, Fangyi [1 ,5 ]
机构
[1] Nankai Univ, Engn Res Ctr High Efficiency Energy Storage, Key Lab Adv Energy Mat Chem, Coll Chem,Minist Educ, Tianjin 300071, Peoples R China
[2] City Univ Hong Kong, Dept Phys, Hong Kong 999077, Peoples R China
[3] Jiangsu Univ Sci & Technol, Sch Mat Sci & Engn, Zhenjiang 212003, Peoples R China
[4] China FAW Grp Co Ltd, New Energy Dev Inst, Battery Res Dept, Changchun 130013, Peoples R China
[5] Haihe Lab Sustainable Chem Transformat, Tianjin 300192, Peoples R China
基金
中国国家自然科学基金;
关键词
molten salt synthesis; nonstoichiometric LiNiO2; single-crystalline cathode materials; slightly Li-rich; structural evolution; CATHODE MATERIALS; OXIDE CATHODES; ELECTROCHEMISTRY;
D O I
10.1002/aenm.202300407
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Cobalt-free LiNiO2 is an attractive cathode material with high energy density and low cost but suffers from severe structural degradation and poor performance. Here, a molten salt-assisted synthesis combined with a Li-refeeding strategy is proposed to obtain nonstoichiometric Li1+xNi1-xO2 with submicron particle size and superior rate performance. The slightly Li-rich and single-crystalline characters inhibit Li+/Ni2+ anti-site defects and mitigates the undesirable phase evolution. Remarkably, single-crystalline Li1.045Ni0.955O2 exhibits a high specific capacity (218.7 mAh g(-1) at 0.1 C), considerable rate capability (187.0 mAh g(-1) at 5 C), and an initial Coulombic efficiency (89.62% at 0.1 C) in the 1.27 Ah pouch full cell employing the graphite anode, significantly outperforming near stoichiometric LiNiO2. Furthermore, the particulate morphology of Li1.045Ni0.955O2 remains intact at charge voltages up to 4.8 V, whereas near stoichiometric LiNiO2 features intragranular cracks and irreversible lattice distortion. This study underscores the value of molten salt-assisted synthesis and Li-refeeding modification to upgrade Ni-based layered oxide cathode materials for advanced Li-ion batteries.
引用
收藏
页数:11
相关论文
共 47 条
[21]   Ultrathin Li-Si-O Coating Layer to Stabilize the Surface Structure and Prolong the Cycling Life of Single-Crystal LiNi0.6Co0.2Mn0.2O2 Cathode Materials at 4.5 V [J].
Li, Guangxin ;
You, Longzhen ;
Wen, Ya ;
Zhang, Congcong ;
Huang, Ben ;
Chu, BinBin ;
Wu, Jian-Hua ;
Huang, Tao ;
Yu, Aishui .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (09) :10952-10963
[22]   CRYSTAL-STRUCTURE OF LIXNI2-XO2 AND A LATTICE-GAS MODEL FOR THE ORDER-DISORDER TRANSITION [J].
LI, W ;
REIMERS, JN ;
DAHN, JR .
PHYSICAL REVIEW B, 1992, 46 (06) :3236-3246
[23]   A simple one-step molten salt method for synthesis of micron-sized single primary particle LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries [J].
Liang, Rui ;
Wu, Zhi-Yong ;
Yang, Wen-Mao ;
Tang, Zuo-Qin ;
Xiong, Guo-Gang ;
Cao, Yin-Chun ;
Hu, Su-Rong ;
Wang, Zhen-Bo .
IONICS, 2020, 26 (04) :1635-1643
[24]   Origin of structural degradation in Li-rich layered oxide cathode [J].
Liu, Tongchao ;
Liu, Jiajie ;
Li, Luxi ;
Yu, Lei ;
Diao, Jiecheng ;
Zhou, Tao ;
Li, Shunning ;
Dai, Alvin ;
Zhao, Wenguang ;
Xu, Shenyang ;
Ren, Yang ;
Wang, Liguang ;
Wu, Tianpin ;
Qi, Rui ;
Xiao, Yinguo ;
Zheng, Jiaxin ;
Cha, Wonsuk ;
Harder, Ross ;
Robinson, Ian ;
Wen, Jianguo ;
Lu, Jun ;
Pan, Feng ;
Amine, Khalil .
NATURE, 2022, 606 (7913) :305-+
[25]   A Molten-Salt Method to Synthesize Ultrahigh-Nickel Single-Crystalline LiNi0.92Co0.06Mn0.02O2 with Superior Electrochemical Performance as Cathode Material for Lithium-Ion Batteries [J].
Lv, Fei ;
Zhang, Yimin ;
Wu, Mengtao ;
Gu, Yuzong .
SMALL, 2022, 18 (28)
[26]   Crack-free single-crystalline Co-free Ni-rich LiNi0.95Mn0.05O2 layered cathode [J].
Ni, Lianshan ;
Guo, Ruiting ;
Fang, Susu ;
Chen, Jun ;
Gao, Jinqiang ;
Mei, Yu ;
Zhang, Shu ;
Deng, Wentao ;
Zou, Guoqiang ;
Hou, Hongshuai ;
Ji, Xiaobo .
ESCIENCE, 2022, 2 (01) :116-124
[27]   Single-Crystalline Ni-Rich layered cathodes with Super-Stable cycling [J].
Ni, Lianshan ;
Guo, Ruiting ;
Deng, Wentao ;
Wang, Baowei ;
Chen, Jun ;
Mei, Yu ;
Gao, Jinqiang ;
Gao, Xu ;
Yin, Shouyi ;
Liu, Huanqing ;
Zhang, Shu ;
Zou, Guoqiang ;
Hou, Hongshuai ;
Ji, Xiaobo .
CHEMICAL ENGINEERING JOURNAL, 2022, 431
[28]   Enabling high energy lithium metal batteries via single-crystal Ni-rich cathode material co-doping strategy [J].
Ou, Xing ;
Liu, Tongchao ;
Zhong, Wentao ;
Fan, Xinming ;
Guo, Xueyi ;
Huang, Xiaojing ;
Cao, Liang ;
Hu, Junhua ;
Zhang, Bao ;
Chu, Yong S. ;
Hu, Guorong ;
Lin, Zhang ;
Dahbi, Mouad ;
Alami, Jones ;
Amine, Khalil ;
Yang, Chenghao ;
Lu, Jun .
NATURE COMMUNICATIONS, 2022, 13 (01)
[29]   Degradation Mechanism of Ni-Rich Cathode Materials: Focusing on Particle Interior [J].
Park, Nam-Yung ;
Park, Geon-Tae ;
Kim, Su-Bin ;
Jung, Wangmo ;
Park, Byung-Chun ;
Sun, Yang-Kook .
ACS ENERGY LETTERS, 2022, 7 (07) :2362-2369
[30]   Single-crystal nickel-rich layered-oxide battery cathode materials: synthesis, electrochemistry, and intra-granular fracture [J].
Qian, Guannan ;
Zhang, Youtian ;
Li, Linsen ;
Zhang, Ruixin ;
Xu, Junmeng ;
Cheng, Zhenjie ;
Xie, Sijie ;
Wang, Han ;
Rao, Qunli ;
He, Yushi ;
Shen, Yanbin ;
Chen, Liwei ;
Tang, Ming ;
Ma, Zi-Feng .
ENERGY STORAGE MATERIALS, 2020, 27 :140-149