Federated Domain Generalization for Image Recognition via Cross-Client Style Transfer

被引:31
作者
Chen, Junming [1 ]
Jiang, Meirui [2 ]
Dou, Qi [2 ]
Chen, Qifeng [1 ]
机构
[1] HKUST, Hong Kong, Peoples R China
[2] CUHK, Hong Kong, Peoples R China
来源
2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV) | 2023年
关键词
D O I
10.1109/WACV56688.2023.00044
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Domain generalization (DG) has been a hot topic in image recognition, with a goal to train a general model that can perform well on unseen domains. Recently, federated learning (FL), an emerging machine learning paradigm to train a global model from multiple decentralized clients without compromising data privacy, has brought new challenges and possibilities to DG. In the FL scenario, many existing state-of-the-art (SOTA) DG methods become ineffective because they require the centralization of data from different domains during training. In this paper, we propose a novel domain generalization method for image recognition under federated learning through cross-client style transfer (CCST) without exchanging data samples. Our CCST method can lead to more uniform distributions of source clients, and make each local model learn to fit the image styles of all the clients to avoid the different model biases. Two types of style (single image style and overall domain style) with corresponding mechanisms are proposed to be chosen according to different scenarios. Our style representation is exceptionally lightweight and can hardly be used to reconstruct the dataset. The level of diversity is also flexible to be controlled with a hyper-parameter. Our method outperforms recent SOTA DG methods on two DG benchmarks (PACS, OfficeHome) and a large-scale medical image dataset (Camelyon17) in the FL setting. Last but not least, our method is orthogonal to many classic DG methods, achieving additive performance by combined utilization. Our code is available at: https://chenjunming.ml/proj/CCST.
引用
收藏
页码:361 / 370
页数:10
相关论文
共 44 条
[1]  
Arjovsky M, 2020, Arxiv, DOI [arXiv:1907.02893, DOI 10.48550/ARXIV.1907.02893, 10.48550/arXiv.1907.02893]
[2]  
Arpit D, 2022, Arxiv, DOI [arXiv:2110.10832, 10.48550/arXiv.2110.10832]
[3]   From Detection of Individual Metastases to Classification of Lymph Node Status at the Patient Level: The CAMELYON17 Challenge [J].
Bandi, Peter ;
Geessink, Oscar ;
Manson, Quirine ;
van Dijk, Marcory ;
Balkenhol, Maschenka ;
Hermsen, Meyke ;
Bejnordi, Babak Ehteshami ;
Lee, Byungjae ;
Paeng, Kyunghyun ;
Zhong, Aoxiao ;
Li, Quanzheng ;
Zanjani, Farhad Ghazvinian ;
Zinger, Svitlana ;
Fukuta, Keisuke ;
Komura, Daisuke ;
Ovtcharov, Vlado ;
Cheng, Shenghua ;
Zeng, Shaoqun ;
Thagaard, Jeppe ;
Dahl, Anders B. ;
Lin, Huangjing ;
Chen, Hao ;
Jacobsson, Ludwig ;
Hedlund, Martin ;
Cetin, Melih ;
Halici, Eren ;
Jackson, Hunter ;
Chen, Richard ;
Both, Fabian ;
Franke, Joerg ;
Kusters-Vandevelde, Heidi ;
Vreuls, Willem ;
Bult, Peter ;
van Ginneken, Bram ;
van der Laak, Jeroen ;
Litjens, Geert .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (02) :550-560
[4]   Domain Generalization by Solving Jigsaw Puzzles [J].
Carlucci, Fabio M. ;
D'Innocente, Antonio ;
Bucci, Silvia ;
Caputo, Barbara ;
Tommasi, Tatiana .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :2224-2233
[5]   StyleBank: An Explicit Representation for Neural Image Style Transfer [J].
Chen, Dongdong ;
Yuan, Lu ;
Liao, Jing ;
Yu, Nenghai ;
Hua, Gang .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2770-2779
[6]  
Dou Qi, 2019, Advances in neural information processing systems, V32, P3
[7]  
Du YJ, 2020, Img Proc Comp Vis Re, V12355, P200, DOI 10.1007/978-3-030-58607-2_12
[8]  
Dumoulin V., 2017, P INT C LEARN REPR
[9]  
Dumoulin V, 2017, Arxiv, DOI arXiv:1610.07629
[10]   Image Style Transfer Using Convolutional Neural Networks [J].
Gatys, Leon A. ;
Ecker, Alexander S. ;
Bethge, Matthias .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :2414-2423