Learning data teaching strategies via knowledge tracing

被引:3
|
作者
Abdelrahman, Ghodai [1 ]
Wang, Qing [1 ]
机构
[1] Australian Natl Univ, Sch Comp, Canberra, Australia
关键词
Knowledge tracing; Machine teaching; Reinforcement learning; Key -value memory network; Attention;
D O I
10.1016/j.knosys.2023.110511
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Teaching plays a fundamental role in human learning. Typically, a human teaching strategy involves assessing a student's knowledge progress for tailoring the teaching materials to enhance the learning progress. A human teacher can achieve this by tracing a student's knowledge over essential learning concepts in a task. Albeit, such a teaching strategy is not well exploited yet in machine learning as current machine teaching methods tend to directly assess the progress of individual training samples without paying attention to the underlying learning concepts in a learning task. In this paper, we propose a novel method, called Knowledge Augmented Data Teaching (KADT), which can optimize a data teaching strategy for a student model by tracing its knowledge progress over multiple learning concepts in a learning task. Specifically, the KADT method incorporates a knowledge tracing model to dynamically capture the knowledge progress of a student model in terms of latent learning concepts. We further develop an attention-pooling mechanism to distill knowledge representations of a student model with respect to class labels, which enables to develop a data teaching strategy on critical training samples. We have evaluated the performance of the KADT method on four different machine learning tasks, including knowledge tracing, sentiment analysis, movie recommendation, and image classification. The KADT method consistently outperforms the state-of-the-art methods on all these tasks.(c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Convolutional Knowledge Tracing: Modeling Individualization in Student Learning Process
    Shen, Shuanghong
    Liu, Qi
    Chen, Enhong
    Wu, Han
    Huang, Zhenya
    Zhao, Weihao
    Su, Yu
    Ma, Haiping
    Wang, Shijin
    PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, : 1857 - 1860
  • [42] A Confusion-Enhanced Deep Learning Model for Knowledge Tracing
    Yin, Ming
    Huang, Ruihe
    2024 4TH INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND ARTIFICIAL INTELLIGENCE, CCAI 2024, 2024, : 258 - 262
  • [43] DGEKT: A Dual Graph Ensemble Learning Method for Knowledge Tracing
    Cui, Chaoran
    Yao, Yumo
    Zhang, Chunyun
    Ma, Hebo
    Ma, Yuling
    Ren, Zhaochun
    Zhang, Chen
    Ko, James
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2024, 42 (03)
  • [44] Integrating learning factors and Bayesian network for interpretable knowledge tracing
    Diao X.-L.
    Zhang Q.-L.
    Zeng Q.-T.
    Duan H.
    Song Z.-G.
    Zhao H.
    Journal of Intelligent and Fuzzy Systems, 2024, 46 (04) : 8213 - 8229
  • [45] Machine Learning Techniques for Knowledge Tracing: A Systematic Literature Review
    Ramirez Luelmo, Sergio Ivan
    El Mawas, Nour
    Heutte, Jean
    CSEDU: PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED EDUCATION - VOL 1, 2021, : 60 - 70
  • [46] A Pre-trained Knowledge Tracing Model with Limited Data
    Yue, Wenli
    Su, Wei
    Liu, Lei
    Cai, Chuan
    Yuan, Yongna
    Jia, Zhongfeng
    Liu, Jiamin
    Xie, Wenjian
    DATABASE AND EXPERT SYSTEMS APPLICATIONS, PT I, DEXA 2024, 2024, 14910 : 163 - 178
  • [47] Research Advances on Knowledge Tracing Models in Educational Big Data
    Hu X.
    Liu F.
    Bu C.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2020, 57 (12): : 2523 - 2546
  • [48] Deep Knowledge Tracing Based on Spatial and Temporal Representation Learning for Learning Performance Prediction
    Lyu, Liting
    Wang, Zhifeng
    Yun, Haihong
    Yang, Zexue
    Li, Ya
    APPLIED SCIENCES-BASEL, 2022, 12 (14):
  • [49] Improving Knowledge Tracing via Considering Conceptual Structure and Individual Differences
    Mao, Aihua
    Chen, Jiaming
    Liu, Yong-Jin
    PROCEEDINGS OF THE ACM TURING AWARD CELEBRATION CONFERENCE-CHINA 2024, ACM-TURC 2024, 2024, : 59 - 65
  • [50] FDKT: Towards an Interpretable Deep Knowledge Tracing via Fuzzy Reasoning
    Liu, Fei
    Bu, Chenyang
    Zhang, Haotian
    Wu, Le
    Yu, Kui
    Hu, Xuegang
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2024, 42 (05)