Learning data teaching strategies via knowledge tracing

被引:3
|
作者
Abdelrahman, Ghodai [1 ]
Wang, Qing [1 ]
机构
[1] Australian Natl Univ, Sch Comp, Canberra, Australia
关键词
Knowledge tracing; Machine teaching; Reinforcement learning; Key -value memory network; Attention;
D O I
10.1016/j.knosys.2023.110511
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Teaching plays a fundamental role in human learning. Typically, a human teaching strategy involves assessing a student's knowledge progress for tailoring the teaching materials to enhance the learning progress. A human teacher can achieve this by tracing a student's knowledge over essential learning concepts in a task. Albeit, such a teaching strategy is not well exploited yet in machine learning as current machine teaching methods tend to directly assess the progress of individual training samples without paying attention to the underlying learning concepts in a learning task. In this paper, we propose a novel method, called Knowledge Augmented Data Teaching (KADT), which can optimize a data teaching strategy for a student model by tracing its knowledge progress over multiple learning concepts in a learning task. Specifically, the KADT method incorporates a knowledge tracing model to dynamically capture the knowledge progress of a student model in terms of latent learning concepts. We further develop an attention-pooling mechanism to distill knowledge representations of a student model with respect to class labels, which enables to develop a data teaching strategy on critical training samples. We have evaluated the performance of the KADT method on four different machine learning tasks, including knowledge tracing, sentiment analysis, movie recommendation, and image classification. The KADT method consistently outperforms the state-of-the-art methods on all these tasks.(c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Integrate Question Information With Learning Behavior for Knowledge Tracing
    Su, Sheng
    Zeng, Pingfei
    Kang, Chunhua
    Xin, Tao
    IEEE ACCESS, 2025, 13 : 33532 - 33543
  • [22] Self-paced contrastive learning for knowledge tracing
    Dai, Huan
    Yun, Yue
    Zhang, Yupei
    An, Rui
    Zhang, Wenxin
    Shang, Xuequn
    NEUROCOMPUTING, 2024, 609
  • [23] Towards Interpretable Deep Learning Models for Knowledge Tracing
    Lu, Yu
    Wang, Deliang
    Meng, Qinggang
    Chen, Penghe
    ARTIFICIAL INTELLIGENCE IN EDUCATION (AIED 2020), PT II, 2020, 12164 : 185 - 190
  • [24] Research Advances in the Knowledge Tracing Based on Deep Learning
    Liu T.
    Chen W.
    Chang L.
    Gu T.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2022, 59 (01): : 81 - 104
  • [25] Enhanced Learning and Forgetting Behavior for Contextual Knowledge Tracing
    Chen, Mingzhi
    Bian, Kaiquan
    He, Yizhou
    Li, Zhefu
    Zheng, Hua
    INFORMATION, 2023, 14 (03)
  • [26] Ensemble Knowledge Tracing: Modeling interactions in learning process
    Sun, Jianwen
    Zou, Rui
    Liang, Ruxia
    Gao, Lu
    Liu, Sannyuya
    Li, Qing
    Zhang, Kai
    Jiang, Lulu
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 207
  • [27] A systematic literature review on knowledge tracing in learning programming
    Lei, Philip I. S.
    Mendes, Antonio Jose
    2021 IEEE FRONTIERS IN EDUCATION CONFERENCE (FIE 2021), 2021,
  • [28] Adversarial Bootstrapped Question Representation Learning for Knowledge Tracing
    Sun, Jianwen
    Yu, Fenghua
    Liu, Sannyuya
    Luo, Yawei
    Liang, Ruxia
    Shen, Xiaoxuan
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 8016 - 8025
  • [29] Graph-based effective knowledge tracing via subject knowledge mapping
    Yang, Ziyan
    Hu, Jia
    Zhong, Shaochun
    Yang, Lan
    Min, Geyong
    EDUCATION AND INFORMATION TECHNOLOGIES, 2024, : 9813 - 9840
  • [30] Graph Knowledge Structure for Attentional Knowledge Tracing With Self-Supervised Learning
    Liu, Zhaohui
    Liu, Sainan
    Gu, Weifeng
    IEEE ACCESS, 2025, 13 : 10933 - 10943