Hierarchical Feature Fusion and Selection for Hyperspectral Image Classification

被引:10
作者
Feng, Zhixi [1 ]
Liu, Xuehu [1 ]
Yang, Shuyuan [1 ]
Zhang, Kai [2 ]
Jiao, Licheng [1 ]
机构
[1] Xidian Univ, Sch Artif Intelligence, Xian 710071, Shaanxi, Peoples R China
[2] Shandong Normal Univ, Sch Informat Sci & Engn, Jinan 250358, Peoples R China
关键词
Feature extraction; Convolution; Convolutional neural networks; Hyperspectral imaging; Three-dimensional displays; Image classification; Fuses; Feature selection and fusion; hyperspectral image (HSI) classification; spectral multilevel features; NEURAL-NETWORK;
D O I
10.1109/LGRS.2023.3236672
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Most existing classification methods design complicated and large deep neural network (DNN) model to deal with the ubiquitous spectral variability and nonlinearity of hyperspectral images (HSIs). However, their application is blocked by limited training samples and considerable computational costs in real scenes. To solve these problems, we propose a simple spectral hierarchical feature fusion and selection network (HFFSNet). Specifically, we apply 1-D grouped convolution for dimensionality reduction and multilevel feature extraction, then the multilevel features are fused to assist the adaptive feature selection of different layer features via the soft attention mechanism, and finally the selected features are fused to further enhance the feature representation. Extensive experimental results on three hyperspectral datasets demonstrate the effectiveness of the proposed network.
引用
收藏
页数:5
相关论文
共 13 条
[1]   Hyperspectral Image Classification-Traditional to Deep Models: A Survey for Future Prospects [J].
Ahmad, Muhammad ;
Shabbir, Sidrah ;
Roy, Swalpa Kumar ;
Hong, Danfeng ;
Wu, Xin ;
Yao, Jing ;
Khan, Adil Mehmood ;
Mazzara, Manuel ;
Distefano, Salvatore ;
Chanussot, Jocelyn .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 :968-999
[2]   Multi-feature fusion: Graph neural network and CNN combining for hyperspectral image classification [J].
Ding, Yao ;
Zhang, Zhili ;
Zhao, Xiaofeng ;
Hong, Danfeng ;
Cai, Wei ;
Yu, Chengguo ;
Yang, Nengjun ;
Cai, Weiwei .
NEUROCOMPUTING, 2022, 501 :246-257
[3]   Collaborative learning of lightweight convolutional neural network and deep clustering for hyperspectral image semi-supervised classification with limited training samples [J].
Fang, Bei ;
Li, Ying ;
Zhang, Haokui ;
Chan, Jonathan Cheung-Wai .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2020, 161 :164-178
[4]   Hyperspectral and Multispectral Classification for Coastal Wetland Using Depthwise Feature Interaction Network [J].
Gao, Yunhao ;
Li, Wei ;
Zhang, Mengmeng ;
Wang, Jianbu ;
Sun, Weiwei ;
Tao, Ran ;
Du, Qian .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[5]   Deep Convolutional Neural Networks for Hyperspectral Image Classification [J].
Hu, Wei ;
Huang, Yangyu ;
Wei, Li ;
Zhang, Fan ;
Li, Hengchao .
JOURNAL OF SENSORS, 2015, 2015
[6]   Deep Learning for Hyperspectral Image Classification: An Overview [J].
Li, Shutao ;
Song, Weiwei ;
Fang, Leyuan ;
Chen, Yushi ;
Ghamisi, Pedram ;
Benediktsson, Jon Atli .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (09) :6690-6709
[7]   Asymmetric Feature Fusion Network for Hyperspectral and SAR Image Classification [J].
Li, Wei ;
Gao, Yunhao ;
Zhang, Mengmeng ;
Tao, Ran ;
Du, Qian .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (10) :8057-8070
[8]   HybridSN: Exploring 3-D-2-D CNN Feature Hierarchy for Hyperspectral Image Classification [J].
Roy, Swalpa Kumar ;
Krishna, Gopal ;
Dubey, Shiv Ram ;
Chaudhuri, Bidyut B. .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (02) :277-281
[9]   Spectral-Spatial Unified Networks for Hyperspectral Image Classification [J].
Xu, Yonghao ;
Zhang, Liangpei ;
Du, Bo ;
Zhang, Fan .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (10) :5893-5909
[10]   A Nonparametric Feature Extraction and Its Application to Nearest Neighbor Classification for Hyperspectral Image Data [J].
Yang, Jinn-Min ;
Yu, Pao-Ta ;
Kuo, Bor-Chen .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (03) :1279-1293