On Refinements of Numerical Radius Inequalities

被引:2
作者
Hyder, Javariya [1 ]
Akram, Muhammad Saeed [2 ]
机构
[1] Khwaja Fareed Univ Engn & Informat Technol, Dept Math, Rahim Yar Khan, Pakistan
[2] Ghazi Univ, Fac Sci, Dept Math, Dera Ghazi Khan 32200, Pakistan
关键词
Numerical radius; Inequalities; McCarty inequality; Mixed Schwarz inequality; ZEROS;
D O I
10.1007/s40995-023-01438-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, several numerical radius inequalities are developed for bounded linear operators defined on a Complex Hilbert space H which refine some existing numerical radius inequalities.
引用
收藏
页码:915 / 925
页数:11
相关论文
共 24 条
[1]   ESTIMATES FOR THE NUMERICAL RADIUS AND THE SPECTRAL RADIUS OF THE FROBENIUS COMPANION MATRIX AND BOUNDS FOR THE ZEROS OF POLYNOMIALS [J].
Abu-Omar, Amer ;
Kittaneh, Fuad .
ANNALS OF FUNCTIONAL ANALYSIS, 2014, 5 (01) :56-62
[2]   Refinements of some numerical radius inequalities for Hilbert space operators [J].
Alomari, Mohammad W. .
LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (07) :1208-1223
[3]  
[Anonymous], 1971, REND SEM MATH U POLI
[4]  
Bhunia P., 2021, ARXIV
[5]   Proper Improvement of Well-Known Numerical Radius Inequalities and Their Applications [J].
Bhunia, Pintu ;
Paul, Kallol .
RESULTS IN MATHEMATICS, 2021, 76 (04)
[6]   New upper bounds for the numerical radius of Hilbert space operators [J].
Bhunia, Pintu ;
Paul, Kallol .
BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 167
[7]   Bounds for zeros of a polynomial using numerical radius of Hilbert space operators [J].
Bhunia, Pintu ;
Bag, Santanu ;
Paul, Kallol .
ANNALS OF FUNCTIONAL ANALYSIS, 2021, 12 (02)
[8]   Numerical radius inequalities and its applications in estimation of zeros of polynomials [J].
Bhunia, Pintu ;
Bag, Santanu ;
Paul, Kallol .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 573 :166-177
[9]  
DRAGOMIR S. S., 2008, Research report collection, V11
[10]  
Dragomir SS, 2013, SPRINGERBRIEF MATH, P1, DOI 10.1007/978-3-319-01448-7