Integrated use of Sentinel-1 and Sentinel-2 data and open-source machine learning algorithms for burnt and unburnt scars

被引:17
|
作者
Tariq, Aqil [1 ]
Jiango, Yan [1 ]
Lu, Linlin [2 ]
Jamil, Ahsan [3 ]
Al-ashkar, Ibrahim [4 ]
Kamran, Muhammad [5 ]
El Sabagh, Ayman [6 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan, Peoples R China
[2] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing, Peoples R China
[3] New Mexico State Univ, Dept Plant & Environm Sci, Las Cruces, NM USA
[4] King Saud Univ, Coll Food & Agr Sci, Dept Plant Prod, Riyadh, Saudi Arabia
[5] Lanzhou Univ, Coll Pastoral Agr Sci & Technol, Lanzhou, Peoples R China
[6] Kafrelsheikh Univ, Fac Agr, Dept Agron, Kafr El Shaikh, Egypt
关键词
Synthetic Aperture Radar (SAR); Grey Level Co-occurrence Matrix (GLCM); differential Normalized Burnt Ratio (dNBR); machine learning; F-score; H-a plane; SPECTRAL INDEXES; SAR BACKSCATTER; SEVERITY ASSESSMENT; AREA DETECTION; FIRE; FORESTS; BAND;
D O I
10.1080/19475705.2023.2190856
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This research compares the use of the SAR (Sentinel-1) and Optical (Sentinel-2) sensors in identifying and mapping burnt and unburnt scars are rising during a bushfire in southeastern Australia and Margalla Hills, Islamabad, Pakistan, in 2019 and 2020. In order to evaluate the backscatter strength along with the Polarimetric decomposition portion, the C-band dual-polarized Sentinel-1 data was investigated to determine the magnitude of the burnt areas of forest cover in the study area. We could derive texture measurements from locally-based statistics using the Grey Level Co-occurrence Matrix (GLCM) and the backscatter coefficient. This was because of how well it picked up on differences in texture between burned and unburned scars. In contrast, Sentinel-2 optical remote sensing was employed to evaluate the extent of the burnt intensity levels for both regions utilizing the differential Normalized Burnt Ratio (dNBR). A Support Vector Machine (SVM) and Markov Random Field (MRF) classifier were utilized to investigate the study's context. The ideal smoothing parameter is the result of incorporating the image's spectral characteristics and spatial meaning. Sentinel-2 images were used as a foundation for both the test and training datasets, which were built from images of both unburned and burned areas broken down pixel by pixel. In both types, including spectral sensitivity and sensitivity of Polarimetric for the two groups identified after classification, the experimental findings showed a clear association between them. The algorithm's efficiency was evaluated using the kappa coefficient and F-score calculation. Except for Sentinel-1 data in Pakistan, all fire areas have more than 0.80 accuracies. The highest precision of both Sentinel-1 and Sentinel-2 was also provided by the performance of users' and producers' accuracy. The entropy alpha decomposition helped define the target given by the H-a plane based on its physical properties. After the burn, the entropy and alpha values diminished and formed a pattern. However, the findings in this field validate the effectiveness of SAR sensors data and optical satellite in forest applications. The related sensitivity is highly dependent on the composition of the landscape, the geographical nature of the study area, and the severity of the burn.
引用
收藏
页数:28
相关论文
共 50 条
  • [31] A Machine Learning Approach for NDVI Forecasting based on Sentinel-2 Data
    Cavalli, Stefano
    Penzotti, Gabriele
    Amoretti, Michele
    Caselli, Stefano
    PROCEEDINGS OF THE 16TH INTERNATIONAL CONFERENCE ON SOFTWARE TECHNOLOGIES (ICSOFT), 2021, : 473 - 480
  • [32] Quantifying Seagrass Density Using Sentinel-2 Data and Machine Learning
    Meister, Martin
    Qu, John J.
    REMOTE SENSING, 2024, 16 (07)
  • [33] Mapping Paddy Cropland in Guntur District using Machine Learning and Google Earth Engine utilizing Images from Sentinel-1 and Sentinel-2
    Nagendram, Pureti Siva
    Satyanarayana, Penke
    Teja, Panduranga Ravi
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2023, 13 (06) : 12427 - 12432
  • [34] Digital Soil Texture Mapping and Spatial Transferability of Machine Learning Models Using Sentinel-1, Sentinel-2, and Terrain-Derived Covariates
    Mirzaeitalarposhti, Reza
    Shafizadeh-Moghadam, Hossein
    Taghizadeh-Mehrjardi, Ruhollah
    Demyan, Michael Scott
    REMOTE SENSING, 2022, 14 (23)
  • [35] Synergistic Use of Radar Sentinel-1 and Optical Sentinel-2 Imagery for Crop Mapping: A Case Study for Belgium
    Van Tricht, Kristof
    Gobin, Anne
    Gilliams, Sven
    Piccard, Isabelle
    REMOTE SENSING, 2018, 10 (10)
  • [36] Crop Type Identification and Mapping Using Machine Learning Algorithms and Sentinel-2 Time Series Data
    Feng, Siwen
    Zhao, Jianjun
    Liu, Tingting
    Zhang, Hongyan
    Zhang, Zhengxiang
    Guo, Xiaoyi
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (09) : 3295 - 3306
  • [37] Crop Type Classification based on Machine Learning with Multitemporal Sentinel-1 Data
    Jeppesen, Jacob Hoxbroe
    Jacobsen, Rune Hylsberg
    Jorgensen, Rasmus Nyholm
    2020 23RD EUROMICRO CONFERENCE ON DIGITAL SYSTEM DESIGN (DSD 2020), 2020, : 557 - 564
  • [38] MACHINE LEARNING ALGORITHMS IN GRASSLAND MONITORING: UTILIZING MULTI-TEMPORAL SENTINEL-1 SAR AND WEATHER DATA
    Taravat, Alireza
    Silvestro, Paolo Cosmo
    Gonzalez-Dugo, Maria P.
    Castelli, Mariapina
    Hinz, Robert
    Petit, David
    IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024, 2024, : 4928 - 4931
  • [39] Mapping Crop Types Using Sentinel-2 Data Machine Learning and Monitoring Crop Phenology with Sentinel-1 Backscatter Time Series in Pays de Brest, Brittany, France
    Xie, Guanyao
    Niculescu, Simona
    REMOTE SENSING, 2022, 14 (18)
  • [40] High-resolution mapping of forest canopy height using machine learning by coupling ICESat-2 LiDAR with Sentinel-1, Sentinel-2 and Landsat-8 data
    Li, Wang
    Niu, Zheng
    Shang, Rong
    Qin, Yuchu
    Wang, Li
    Chen, Hanyue
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2020, 92