Microstructural Evolution and Mechanical Properties of Spark Plasma Sintering of Tantalum-Tungsten Alloy

被引:2
|
作者
Yu, Dong [1 ]
Bi, Xianlei [2 ]
Xing, Lei [1 ]
Zhang, Qiaoxin [1 ,3 ]
机构
[1] Wuhan Univ Technol, Sch Mech & Elect Engn, Wuhan 430070, Peoples R China
[2] Wuhan Univ Technol, Sch Mat Sci & Engn, Wuhan 430070, Peoples R China
[3] Harbin Inst Technol, State Key Lab Adv Welding & Joining, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Ta-W alloy; powder metallurgy; mechanical properties; microstructures; STRENGTHENING MECHANISMS;
D O I
10.3390/met13030533
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Due to the rapid sintering and densification, spark plasma sintering (SPS) technology can significantly inhibit grain coarsening, and obtain alloy with high density and uniform microstructure. Tantalum-tungsten (Ta-W) alloy had been fabricated by powder metallurgy and consolidated by SPS at temperature of 1600 degrees C for 5 min at the pressure of 35 MPa. Specimens of pure Ta and four tantalum-based alloys with different concentrations of tungsten ranging from 2.5 to 10 were used to investigate the behavior of developed alloys. X-ray diffraction analyses were applied for all compositions of Ta-W alloys. The morphology of fracture sections was analyzed by scanning electron microscopy (SEM). Morphologies of initial Ta and W powders, microstructures of sintering Ta-W alloy and tensile fractographs of the specimens with different components were observed. When the concentrations of tungsten were distributed with 2.5 wt%, 5 wt%, 7.5 wt% and 10 wt%, the measured densities were 16.151 g/cm(3), 15.756 g/cm(3), 15.711 g/cm(3), 15.665 g/cm(3) and 15.670 g/cm(3) respectively. As the content of tungsten increased, the density of the alloy decreased and the grain was refined, meanwhile the micro-hardness of the samples increased gradually. Furthermore, the addition of tungsten could greatly enhance the strength of the alloys, but decrease the plasticity of the alloys. Ta-2.5 wt%W shows the maximum bending strength with a value of 832.29 MPa, while the percentage of transgranular fracture increased with the increase of tungsten content.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Microstructural evolution and mechanical properties of a β-solidifying γ-TiAl alloy densified by spark plasma sintering
    Niu, H. Z.
    Su, Y. J.
    Zhang, Y. S.
    Zhang, D. L.
    Lu, J. W.
    Zhang, W.
    Zhang, P. X.
    INTERMETALLICS, 2015, 66 : 96 - 102
  • [2] Microstructural Evolution and Mechanical Properties of an Advanced -TiAl Based Alloy Processed by Spark Plasma Sintering
    Wimler, David
    Lindemann, Janny
    Clemens, Helmut
    Mayer, Svea
    MATERIALS, 2019, 12 (09)
  • [3] Microstructural evolution and mechanical properties of AlCrFeNiCoC high entropy alloy produced via spark plasma sintering
    Emamifar, Armin
    Sadeghi, Behzad
    Cavaliere, Pasquale
    Ziaei, Hosein
    POWDER METALLURGY, 2019, 62 (01) : 61 - 70
  • [4] Tantalum-tungsten oxide thermite composites prepared by sol-gel synthesis and spark plasma sintering
    Kuntz, Joshua D.
    Cervantes, Octavio G.
    Gash, Alexander E.
    Munir, Zuhair A.
    COMBUSTION AND FLAME, 2010, 157 (08) : 1566 - 1571
  • [5] Microstructural evolution and sintering kinetics during spark plasma sintering of pure tantalum powder
    Dong, Chao
    Bi, Xianlei
    Yu, Jingui
    Liu, Rong
    Zhang, Qiaoxin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 781 : 84 - 92
  • [6] Microstructural Evolution and Mechanical Properties of Biomedical β-Ti Alloy Prepared by Spark Plasma Sintering Its Prealloyed Powder
    Ma, Xiqun
    Niu, Hongzhi
    Su, Yongjun
    Sun, Qianqian
    Zhang, Hairui
    Yu, Zhentao
    Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 2019, 48 (10): : 3095 - 3101
  • [7] Microstructural evolution and mechanical properties of a high yttrium containing TiAl based alloy densified by spark plasma sintering
    Gu, Xu
    Cao, Fuyang
    Liu, Na
    Zhang, Guoqing
    Yang, Dongye
    Shen, Hongxian
    Zhang, Dongdong
    Song, Heqian
    Sun, Jianfei
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 819 (819)
  • [8] Microstructural Evolution and Mechanical Properties of Biomedical β-Ti Alloy Prepared by Spark Plasma Sintering Its Prealloyed Powder
    Ma Xiqun
    Niu Hongzhi
    Su Yongjun
    Sun Qianqian
    Zhang Hairui
    Yu Zhentao
    RARE METAL MATERIALS AND ENGINEERING, 2019, 48 (10) : 3095 - 3101
  • [9] Microstructural evolution and mechanical properties of pure titanium powders processed by spark plasma sintering
    Motsi, Glenda T.
    Guillemet-Fritsch, Sophie
    Chevallier, Geoffroy
    Shongwe, Mxolisi B.
    Olubambi, Peter A.
    Estournes, Claude
    POWDER TECHNOLOGY, 2019, 345 : 415 - 424
  • [10] Microstructural and mechanical properties of NiCoCrAlSi high entropy alloy fabricated by mechanical alloying and spark plasma sintering
    Shahbazkhan, Armita
    Sabet, Hamed
    Abbasi, Mehrdad
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 896